Low-rank Matrix Recovery from Errors and Erasures

被引:0
|
作者
Chen, Yudong [1 ]
Jalali, Ali [1 ]
Sanghavi, Sujay [1 ]
Caramanis, Constantine [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper considers the recovery of a low-rank matrix from an observed version that simultaneously contains both (a) erasures: most entries are not observed, and (b) errors: values at a constant fraction of (unknown) locations are arbitrarily corrupted. We provide a new unified performance guarantee on when a (natural) recently proposed method, based on convex optimization, succeeds in exact recovery. Our result allows for the simultaneous presence of random and deterministic components in both the error and erasure patterns. On the one hand, corollaries obtained by specializing this one single result in different ways recovers (upto poly-log factors) all the existing works in matrix completion, and sparse and low-rank matrix recovery. On the other hand, our results also provide the first guarantees for (a) deterministic matrix completion, and (b) recovery when we observe a vanishing fraction of entries of a corrupted matrix.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Low-Rank Matrix Recovery From Errors and Erasures
    Chen, Yudong
    Jalali, Ali
    Sanghavi, Sujay
    Caramanis, Constantine
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) : 4324 - 4337
  • [2] Quantization for low-rank matrix recovery
    Lybrand, Eric
    Saab, Rayan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) : 161 - 180
  • [3] Sensitivity of low-rank matrix recovery
    Breiding, Paul
    Vannieuwenhoven, Nick
    NUMERISCHE MATHEMATIK, 2022, 152 (04) : 725 - 759
  • [4] Sensitivity of low-rank matrix recovery
    Paul Breiding
    Nick Vannieuwenhoven
    Numerische Mathematik, 2022, 152 : 725 - 759
  • [5] An Overview of Low-Rank Matrix Recovery From Incomplete Observations
    Davenport, Mark A.
    Romberg, Justin
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 608 - 622
  • [6] Low-Rank Matrix Recovery with Unknown Correspondence
    Tang, Zhiwei
    Chang, Tsung-Hui
    Ye, Xiaojing
    Zha, Hongyuan
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2111 - 2122
  • [7] NONCONVEX ROBUST LOW-RANK MATRIX RECOVERY
    Li, Xiao
    Zhu, Zhihui
    So, Anthony Man-Cho
    Vidal, Rene
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 660 - 686
  • [8] Maximum Entropy Low-Rank Matrix Recovery
    Mak, Simon
    Xie, Yao
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 886 - 901
  • [9] LOW-RANK MATRIX RECOVERY OF DYNAMIC EVENTS
    Asif, M. Salman
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1215 - 1219
  • [10] Matrix recovery with implicitly low-rank data
    Xie, Xingyu
    Wu, Jianlong
    Liu, Guangcan
    Wang, Jun
    NEUROCOMPUTING, 2019, 334 : 219 - 226