Observations of the Source Region of Whistler Mode Waves in Magnetosheath Mirror Structures

被引:20
|
作者
Kitamura, N. [1 ]
Omura, Y. [2 ]
Nakamura, S. [2 ,3 ]
Amano, T. [1 ]
Boardsen, S. A. [4 ,5 ]
Ahmadi, N. [6 ]
Le Contel, O. [7 ]
Lindqvist, P. -A. [8 ]
Ergun, R. E. [6 ]
Saito, Y. [9 ]
Yokota, S. [10 ]
Gershman, D. J. [4 ]
Paterson, W. R. [4 ]
Pollock, C. J. [11 ]
Giles, B. L. [4 ]
Russell, C. T. [12 ]
Strangeway, R. J. [12 ]
Burch, J. L. [13 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Tokyo, Japan
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Japan
[3] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[5] Univ Maryland, Goddard Planetary Heliophys Inst, Baltimore, MD 21201 USA
[6] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA
[7] Univ Paris Saclay, Sorbonne Univ, Ecole Polytech, CNRS,Observ Paris,Lab Phys Plasmas, Paris, France
[8] Royal Inst Technol, Stockholm, Sweden
[9] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan
[10] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka, Japan
[11] Denali Sci, Fairbanks, AK USA
[12] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA USA
[13] Southwest Res Inst, San Antonio, TX USA
基金
日本学术振兴会; 美国国家航空航天局;
关键词
whistler mode waves; mirror mode structures; MMS spacecraft; wave generation; ELECTRON-TEMPERATURE ANISOTROPY; PLASMA COUNT DATA; LION ROARS; CLUSTER OBSERVATIONS; MAGNETIC-STRUCTURES; MMS OBSERVATIONS; POYNTING FLUX; CHORUS WAVES; INSTABILITY; GENERATION;
D O I
10.1029/2019JA027488
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the magnetosheath, intense whistler mode waves, called "Lion roars," are often detected in troughs of magnetic field intensity in mirror mode structures. Using data obtained by the four Magnetospheric Multiscale (MMS) spacecraft, we show that reversals of gradient of magnetic field intensity along the magnetic field correspond to reversals of the field-aligned component of Poynting flux of whistler mode waves in the troughs. Such a characteristic is consistent with the idea that the whistler mode waves are effectively generated near the local minima of magnetic field intensity because of the smallest cyclotron resonance velocity and propagate toward regions of larger magnetic field intensity along the magnetic field lines on both sides. We use the reversal of the Poynting flux as an indicator of wave source regions. In these regions, we find that pancake or an outer edge of butterfly electron distributions above similar to 100 eV are good candidates for wave generation. Unclear correlations of phase difference and amplitude variations of whistler mode waves in cases of similar to 40 km spacecraft separation indicate that a simple plane wave approximation with a constant amplitude is not valid at this spatial scale that is much smaller than the ion gyroradius. The whistler mode waves consist of small coherent wave packets from multiple sources with spatial scales smaller than tens of electron gyroradii transverse to the background magnetic field in a mirror mode structure.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Observations of electron distributions in magnetosheath mirror mode waves
    Chisham, G
    Burgess, D
    Schwartz, SJ
    Dunlop, MW
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A11): : 26765 - 26774
  • [2] On the Growth of Mirror Mode Waves in the Magnetosheath Based on Cluster Observations
    Tatrallyay, M.
    Erdos, G.
    Dandouras, I.
    Georgescu, E.
    CLUSTER ACTIVE ARCHIVE: STUDYING THE EARTH'S SPACE PLASMA ENVIRONMENT, 2010, : 377 - +
  • [3] AMPTE observations of mirror mode waves in the magnetosheath: Wavevector determination
    Chisham, G
    Schwartz, SJ
    Balikhin, MA
    Dunlop, MW
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A1) : 437 - 447
  • [4] WHISTLER-MODE WAVES IN THE JOVIAN MAGNETOSHEATH
    LIN, NG
    KELLOGG, PJ
    THIESSEN, JP
    LENGYELFREY, D
    TSURUTANI, BT
    PHILLIPS, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A12) : 23527 - 23539
  • [5] Long-duration whistler waves in the magnetosheath: Wave characteristics and the possible source region
    Matsui, H
    Hayashi, K
    Kokubun, S
    Mukai, T
    Yamamoto, T
    Tsuruda, K
    Saito, Y
    Okada, T
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A8): : 17583 - 17593
  • [6] Mirror mode structures in the Jovian magnetosheath
    Joy, S. P.
    Kivelson, M. G.
    Walker, R. J.
    Khurana, K. K.
    Russell, C. T.
    Paterson, W. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A12)
  • [7] Oblique propagation of whistler mode waves in the chorus source region
    Santolik, O.
    Gurnett, D. A.
    Pickett, J. S.
    Chum, J.
    Cornilleau-Wehrlin, N.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [8] Mirror mode structures and ELF plasma waves in the Giacobini-Zinner magnetosheath
    Tsurutani, BT
    Lakhina, GS
    Smith, EJ
    Buti, B
    Moses, SL
    Coroniti, FV
    Brinca, AL
    Slavin, JA
    Zwickl, RD
    NONLINEAR PROCESSES IN GEOPHYSICS, 1999, 6 (3-4) : 229 - 234
  • [9] Observations of Whistler Waves Correlated with Electron-scale Coherent Structures in the Magnetosheath Turbulent Plasma
    Huang, S. Y.
    Sahraoui, F.
    Yuan, Z. G.
    Le Contel, O.
    Breuillard, H.
    He, J. S.
    Zhao, J. S.
    Fu, H. S.
    Zhou, M.
    Deng, X. H.
    Wang, X. Y.
    Du, J. W.
    Yu, X. D.
    Wang, D. D.
    Pollock, C. J.
    Torbert, R. B.
    Burch, J. L.
    ASTROPHYSICAL JOURNAL, 2018, 861 (01):
  • [10] Direct observations of energy transfer from resonant electrons to whistler-mode waves in magnetosheath of Earth
    Kitamura, N.
    Amano, T.
    Omura, Y.
    Boardsen, S. A.
    Gershman, D. J.
    Miyoshi, Y.
    Kitahara, M.
    Katoh, Y.
    Kojima, H.
    Nakamura, S.
    Shoji, M.
    Saito, Y.
    Yokota, S.
    Giles, B. L.
    Paterson, W. R.
    Pollock, C. J.
    Barrie, A. C.
    Skeberdis, D. G.
    Kreisler, S.
    Le Contel, O.
    Russell, C. T.
    Strangeway, R. J.
    Lindqvist, P-A
    Ergun, R. E.
    Torbert, R. B.
    Burch, J. L.
    NATURE COMMUNICATIONS, 2022, 13 (01)