Acoustic noise modeling and identification using neural and fuzzy techniques

被引:0
|
作者
Conchinha, JM [1 ]
Silva, CA [1 ]
Sousa, JM [1 ]
Botto, MA [1 ]
da Costa, JMGS [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Mech Engn, GCAR, P-1049001 Lisbon, Portugal
关键词
acoustic noise control; modeling; neural network models; fuzzy models;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents an identification procedure of a multivariable acoustic noise model, produced by a particular Electro-Mechanical Film (EMFi(TM)) actuator. This model will be integrated in an experimental setup for active noise control purposes. The obtained data represents a nonlinear dynamic system, which led to the use of nonlinear identification techniques. A comparison between neural network models and fuzzy models is presented such that their advantages and range of applications is clearly shown. Neural network models have, among others, the property of learning nonlinear multivariable dynamic mappings without suffering from the curse of dimensionality. Fuzzy models have the advantage of combining accuracy and some transparency. The use of nonlinear modeling techniques allows the possibility of modeling acoustic behaviors in a simpler and faster way than conventional mathematical modeling. Experimental results show the applicability of each modeling paradigm.
引用
收藏
页码:825 / 832
页数:8
相关论文
共 50 条
  • [1] Automatic Fingerprint Identification System using fuzzy Neural Techniques
    Mohamed, SM
    Nyongesa, HO
    Siddiqi, J
    [J]. IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 859 - 865
  • [2] Pulse Signal and Source Identification Using Fuzzy-Neural Techniques
    Fitch, Phillip
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2013, 28 (01) : 22 - 33
  • [3] Deep Neural Networks for Acoustic Modeling in the Presence of Noise
    Santana, L. M. Q. D.
    Santos, R. M.
    Matos, L. N.
    Macedo, H. T.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (03) : 918 - 925
  • [4] Modeling, identification, and feedback control of noise in an acoustic duct
    Hong, J
    Akers, JC
    Venugopal, R
    Lee, MN
    Sparks, AG
    Washabaugh, PD
    Bernstein, DS
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1996, 4 (03) : 283 - 291
  • [5] Noise Resistant Identification of Human Iris Patterns Using Fuzzy ARTMAP Neural Network
    Taherian, Arash
    Sh, Mandi Aliyari
    [J]. INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2013, 7 (01): : 105 - 118
  • [6] Impulse noise detection and removal using fuzzy techniques
    Zhang, D
    Wang, Z
    [J]. ELECTRONICS LETTERS, 1997, 33 (05) : 378 - 379
  • [7] ON FUZZY MODELING USING FUZZY NEURAL NETWORKS WITH THE BACKPROPAGATION ALGORITHM
    HORIKAWA, S
    FURUHASHI, T
    UCHIKAWA, Y
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05): : 801 - 806
  • [8] IDENTIFICATION OF HELICOPTER NOISE USING A NEURAL NETWORK
    CABELL, RH
    FULLER, CR
    OBRIEN, WF
    [J]. AIAA JOURNAL, 1992, 30 (03) : 624 - 630
  • [9] Identification of helicopter noise using a neural network
    Cabell, Randolph H.
    Fuller, Chris R.
    O'Brien, Walter F.
    [J]. AIAA journal, 1992, 30 (03): : 624 - 630
  • [10] Fuzzy cluster identification using neural networks
    Sincák, P
    Hric, M
    Kopco, N
    Vascák, J
    [J]. STATE OF THE ART IN COMPUTATIONAL INTELLIGENCE, 2000, : 220 - 230