Dichotomy of global density of Riesz capacity

被引:2
|
作者
Aikawa, Hiroaki [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
dichotomy; Riesz capacity; density; fractional Laplacian; alpha-harmonic; BOUNDARY HARNACK PRINCIPLE;
D O I
10.4064/sm8511-4-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C-alpha be the Riesz capacity of order alpha, 0 < alpha < n, in R-n. We consider the Riesz capacity density (D) under bar (C-alpha, E, r) = inf x is an element of R-n C-alpha (E boolean AND B(x,r))/C-alpha(B(x,r)) for a Borel set E subset of R-n, where B(x, r) stands for the open ball with center at x and radius r. In case 0 < alpha <= 2, we show that lim(r ->infinity)<(D)under bar> (C alpha, E, r) is either 0 or 1; the first case occurs if and only if (D) under bar (C alpha, E, r) is identically zero for all r > 0. Moreover, it is shown that the densities with respect to more general open sets enjoy the same dichotomy. A decay estimate for a-capacitary potentials is also obtained.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 50 条