THE INITIAL-BOUNDARY VALUE PROBLEMS FOR A CLASS OF SIXTH ORDER NONLINEAR WAVE EQUATION
被引:40
|
作者:
Xu, Runzhang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Engn Univ, Coll Sci, Harbin 150001, Heilongjiang, Peoples R China
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaHarbin Engn Univ, Coll Sci, Harbin 150001, Heilongjiang, Peoples R China
Xu, Runzhang
[1
,2
]
Zhang, Mingyou
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R ChinaHarbin Engn Univ, Coll Sci, Harbin 150001, Heilongjiang, Peoples R China
Initial boundary value problem;
sixth order wave equation;
blow up;
existence of global solutions;
arbitrarily positive initial energy;
SEMILINEAR HYPERBOLIC-EQUATIONS;
DOUBLE DISPERSION EQUATIONS;
GLOBAL-SOLUTIONS;
CAUCHY-PROBLEM;
BOUSSINESQ EQUATION;
PARABOLIC EQUATIONS;
BLOW-UP;
NONEXISTENCE;
EXISTENCE;
INSTABILITY;
D O I:
10.3934/dcds.2017244
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper considers the initial boundary value problem of solutions for a class of sixth order 1-D nonlinear wave equations. We discuss the probabilities of the existence and nonexistence of global solutions and give some sufficient conditions for the global and non-global existence of solutions at three different initial energy levels, i.e., sub-critical level, critical level and sup-critical level.