A streamline diffusion nonconforming finite element method for the time-dependent linearized Navier-Stokes equations

被引:1
|
作者
Chen, Yu-mei [1 ,2 ]
Xie, Xiao-ping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] China W Normal Univ, Coll Math & Informat, Nanchong 637002, Sichuan Prov, Peoples R China
基金
中国国家自然科学基金;
关键词
streamline diffusion method; finite difference method; nonconforming finite element method; time-dependent linearized Navier-Stokes equations; error estimate;
D O I
10.1007/s10483-010-1320-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P (1))(2) - P (0) element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
引用
收藏
页码:861 / 874
页数:14
相关论文
共 50 条