THE AMBIENT OBSTRUCTION TENSOR AND CONFORMAL HOLONOMY

被引:1
|
作者
Leistner, Thomas [1 ]
Lischewski, Andree [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA, Australia
[2] Humboldt Univ, Inst Math, Berlin, Germany
基金
澳大利亚研究理事会;
关键词
Fefferman-Graham ambient metric; obstruction tensor; conformal holonomy; exceptional conformal structures; normal conformal Killing forms; EINSTEIN-METRICS; SPACES; CONSTRUCTION; DIMENSION; SIGNATURE;
D O I
10.2140/pjm.2017.290.403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a conformal manifold, we describe a new relation between the ambient obstruction tensor of Fefferman and Graham and the holonomy of the normal conformal Cartan connection. This relation allows us to prove several results on the vanishing and the rank of the obstruction tensor, for example for conformal structures admitting twistor spinors or normal conformal Killing forms. As our main tool we introduce the notion of a conformal holonomy distribution and show that its integrability is closely related to the exceptional conformal structures in dimensions five and six that were found by Nurowski and Bryant.
引用
收藏
页码:403 / 436
页数:34
相关论文
共 50 条
  • [1] CONFORMAL HOLONOMY EQUALS AMBIENT HOLONOMY
    Cap, Andreas
    Gover, A. Rod
    Graham, C. Robin
    Hammerl, Matthias
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 285 (02) : 303 - 318
  • [2] The ambient obstruction tensor and the conformal deformation complex
    Gover, A. Rod
    Peterson, Lawrence J.
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 226 (02) : 309 - 351
  • [3] Ambient connections realising conformal Tractor holonomy
    Armstrong, Stuart
    Leistner, Thomas
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (04): : 265 - 282
  • [4] Ambient connections realising conformal Tractor holonomy
    Stuart Armstrong
    Thomas Leistner
    Monatshefte für Mathematik, 2007, 152 : 265 - 282
  • [5] Conformal structures with explicit ambient metrics and conformal G2 holonomy
    Nurowski, Pawel
    SYMMETRIES AND OVERDETERMINED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 144 : 515 - 526
  • [6] The conformal deformation detour complex for the obstruction tensor
    Branson, Thomas P.
    Gover, A. Rod
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2961 - 2965
  • [7] Ambient obstruction tensor and Q-curvature
    Graham, CR
    Hirachi, K
    ADS/CFT CORRESPONDENCE: EINSTEIN METRICS AND THEIR CONFORMAL BOUNDARIES, 2005, 8 : 59 - 71
  • [8] Aspects of conformal holonomy
    Leitner, Felipe
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 205 - 233
  • [9] Transitive conformal holonomy groups
    Alt, Jesse
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (05): : 1710 - 1720
  • [10] ON CONFORMAL STRUCTURES WITH FUCHSIAN HOLONOMY
    KAPOVICH, ME
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (01): : 23 - 26