Kernel-Based Reinforcement Learning in Robust Markov Decision Processes

被引:0
|
作者
Lim, Shiau Hong [1 ]
Autef, Arnaud [2 ]
机构
[1] IBM Res, Singapore, Singapore
[2] Ecole Polytech, Appl Math Dept, Paris, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The robust Markov Decision Process (MDP) framework aims to address the problem of parameter uncertainty due to model mismatch, approximation errors or even adversarial behaviors. It is especially relevant when deploying the learned policies in real-world applications. Scaling up the robust MDP framework to large or continuous state space remains a challenging problem. The use of function approximation in this case is usually inevitable and this can only amplify the problem of model mismatch and parameter uncertainties. It has been previously shown that, in the case of MDPs with state aggregation, the robust policies enjoy a tighter performance bound compared to standard solutions due to its reduced sensitivity to approximation errors. We extend these results to the much larger class of kernel-based approximators and show, both analytically and empirically that the robust policies can significantly outperform the non-robust counterpart.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Reinforcement Learning in Robust Markov Decision Processes
    Lim, Shiau Hong
    Xu, Huan
    Mannor, Shie
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (04) : 1325 - 1353
  • [2] Kernel-Based Reinforcement Learning
    Hu, Guanghua
    Qiu, Yuqin
    Xiang, Liming
    [J]. INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 757 - 766
  • [3] Kernel-Based Reinforcement Learning
    Dirk Ormoneit
    Śaunak Sen
    [J]. Machine Learning, 2002, 49 : 161 - 178
  • [4] Kernel-based reinforcement learning
    Ormoneit, D
    Sen, S
    [J]. MACHINE LEARNING, 2002, 49 (2-3) : 161 - 178
  • [5] Practical Kernel-Based Reinforcement Learning
    Barreto, Andre M. S.
    Precup, Doina
    Pineau, Joelle
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [6] A reinforcement learning based algorithm for Markov decision processes
    Bhatnagar, S
    Kumar, S
    [J]. 2005 International Conference on Intelligent Sensing and Information Processing, Proceedings, 2005, : 199 - 204
  • [7] Reinforcement Learning for Constrained Markov Decision Processes
    Gattami, Ather
    Bai, Qinbo
    Aggarwal, Vaneet
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [8] Learning Rates of Kernel-Based Robust Classification
    Wang, Shuhua
    Sheng, Baohuai
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1173 - 1190
  • [9] Learning Rates of Kernel-Based Robust Classification
    Shuhua Wang
    Baohuai Sheng
    [J]. Acta Mathematica Scientia, 2022, 42 : 1173 - 1190
  • [10] Kernel-based diffusion approximated Markov decision processes for autonomous navigation and control on unstructured terrains
    Xu, Junhong
    Yin, Kai
    Chen, Zheng
    Gregory, Jason M.
    Stump, Ethan A.
    Liu, Lantao
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (07): : 1056 - 1080