Automatic breast lesion detection in ultrafast DCE-MRI using deep learning

被引:27
|
作者
Ayatollahi, Fazael [1 ,2 ]
Shokouhi, Shahriar B. [1 ]
Mann, Ritse M. [2 ]
Teuwen, Jonas [2 ,3 ]
机构
[1] Iran Univ Sci & Technol IUST, Elect Engn Dept, Tehran, Iran
[2] Radboud Univ Nijmegen Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[3] Netherlands Canc Inst, Dept Radiat Oncol, Amsterdam, Netherlands
关键词
breast lesion detection; computer-aided detection; deep learning; twist; ultrafast magnetic resonance imaging (MRI); SCREENING MRI; CANCER; PERFORMANCE; WOMEN; CLASSIFICATION; SEGMENTATION; SYSTEM; MASS;
D O I
10.1002/mp.15156
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose We propose a deep learning-based computer-aided detection (CADe) method to detect breast lesions in ultrafast DCE-MRI sequences. This method uses both the 3D spatial information and temporal information obtained from the early-phase of the dynamic acquisition. Methods The proposed CADe method, based on a modified 3D RetinaNet model, operates on ultrafast T1 weighted sequences, which are preprocessed for motion compensation, temporal normalization, and are cropped before passing into the model. The model is optimized to enable the detection of relatively small breast lesions in a screening setting, focusing on detection of lesions that are harder to differentiate from confounding structures inside the breast. Results The method was developed based on a dataset consisting of 489 ultrafast MRI studies obtained from 462 patients containing a total of 572 lesions (365 malignant, 207 benign) and achieved a detection rate, sensitivity, and detection rate of benign lesions of 0.90 (0.876-0.934), 0.95 (0.934-0.980), and 0.81 (0.751-0.871) at four false positives per normal breast with 10-fold cross-testing, respectively. Conclusions The deep learning architecture used for the proposed CADe application can efficiently detect benign and malignant lesions on ultrafast DCE-MRI. Furthermore, utilizing the less visible hard-to-detect lesions in training improves the learning process and, subsequently, detection of malignant breast lesions.
引用
收藏
页码:5897 / 5907
页数:11
相关论文
共 50 条
  • [1] Automatic Lesion Detection in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 359 - 368
  • [2] Performance of a Fully Automatic Lesion Detection System for Breast DCE-MRI
    Vignati, Anna
    Giannini, Valentina
    De Luca, Massimo
    Morra, Lia
    Persano, Diego
    Carbonaro, Luca A.
    Bertotto, Ilaria
    Martincich, Laura
    Regge, Daniele
    Bert, Alberto
    Sardanelli, Francesco
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (06) : 1341 - 1351
  • [3] Breast Lesion Characterization Using Kinetic Features Measured On Ultrafast DCE-MRI
    Pineda, F.
    Ren, Z.
    Kulkarni, K.
    Abe, H.
    Karczmar, G.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E145 - E145
  • [4] Weakly supervised breast lesion detection in DCE-MRI using self-transfer learning
    Sun, Rong
    Zhang, Xiaobing
    Xie, Yuanzhong
    Nie, Shengdong
    [J]. MEDICAL PHYSICS, 2023, 50 (08) : 4960 - 4972
  • [5] Breast DCE-MRI segmentation for lesion detection using Chimp Optimization Algorithm
    Si, Tapas
    Patra, Dipak Kumar
    Mondal, Sukumar
    Mukherjee, Prakash
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [6] Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning
    Benjelloun, Mohammed
    El Adoui, Mohammed
    Larhmam, Mohamed Amine
    Mahmoudi, Sidi Ahmed
    [J]. 2018 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2018,
  • [7] A fully automatic lesion detection method for DCE-MRI fat-suppressed breast images
    Vignati, Anna
    Giannini, Valentina
    Bert, Alberto
    Deluca, Massimo
    Morra, Lia
    Persano, Diego
    Martincich, Laura
    Regge, Daniele
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [8] Breast lesion segmentation in DCE-MRI Imaging
    Koper, Zuzanna
    Frackiewicz, Mariusz
    Palus, Henryk
    Borys, Damian
    Psiuk-Maksymowicz, Krzysztof
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 308 - 313
  • [9] Tumor Segmentation in Breast DCE-MRI Slice Using Deep Learning Methods
    Carvalho, Edson Damasceno
    Veloso Silva, Romuere Rodrigues
    Mathew, Mano Joseph
    Duarte Araujo, Flavio Henrique
    de Carvalho Filho, Antonio Oseas
    [J]. 26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [10] Automatic Segmentation of Breast Carcinomas from DCE-MRI using a Statistical Learning Algorithm
    Jayender, J.
    Vosburgh, K. G.
    Gombos, E.
    Ashraf, A.
    Kontos, D.
    Gavenonis, S. C.
    Jolesz, F. A.
    Pohl, K.
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 122 - 125