The supply of a-naphthaleneacetic acid (NAA), to excised chicory roots induced the formation of lateral root meristems mainly localized proximal to the pre-existing apical root meristem, in a region which does not initiate any lateral roots in control conditions. Inhibition of root elongation and concomitant enlargement of the apices were also observed. Quantification of IAA and cytokinin levels showed that the most reproducible and significant changes occurring after the NAA treatment consisted of a decrease in the level of zeatin-O-glucoside conjugates, Hydrolysis of these conjugates might deliver free zeatin-type compounds which were consumed during the lateral root growth. After 5 d, control excised roots contained a high level of amino acids, mainly as asparagine and arginine, probably issued from proteolysis associated to a senescent-like process. Conversely, in the presence of NAA, neither accumulation of amino acids nor a decrease of the total protein content of the tissue could be detected. Newly initiated meristems expressed the nia gene which encodes nitrate reductase, the first enzyme of the nitrate assimilatory pathway. Thus the increased expression of nitrate reductase which was observed in excised roots of chicory supplied with NAA (Vuylsteker et al., 1997b) may be ascribed to lateral root formation and development. The reinduction of nitrate reduction activity was driven by the increased demand for reduced nitrogen. Thus, the nia gene is one of the genes expressed duping the early stages of root meristem formation.