Aerosol data assimilation and forecast using Geostationary Ocean Color Imager aerosol optical depth and in-situ observations during the KORUS-AQ observing period

被引:12
|
作者
Kim, Ganghan [1 ]
Lee, Seunghee [1 ]
Im, Jungho [1 ]
Song, Chang-Keun [1 ]
Kim, Jhoon [2 ]
Lee, Myong-in [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Urban & Environm Engn, Ulsan, South Korea
[2] Yonsei Univ, Dept Atmospher Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Geostationary Ocean Color Imager; PM10; PM2.5; aerosol data assimilation; 3D-VAR; WRF-Chem; forecast; KORUS-AQ; CHEMICAL TRACERS; AIR-POLLUTION; MODEL; SYSTEM; IMPACT; OZONE; THICKNESS; MODIS; DUST;
D O I
10.1080/15481603.2021.1972714
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This study develops an aerosol data assimilation and forecast system using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and the three-dimensional variational (3D-VAR) data assimilation method. The system assimilates the aerosol optical depth (AOD) from the Geostationary Ocean Color Imager (GOCI) satellite and surface particulate matter (PM) observations. The simulation domain covers Northeast Asia at 15 km horizontal resolution, and the assimilation and forecast skill is evaluated for the Korea-US Air Quality (KORUS-AQ) intensive observing period. Observing system experiments (OSEs) are conducted to examine the changes in quality of assimilation and forecast skills sensitive to the assimilated observational input data. The baseline model simulation underestimates AOD and surface PM concentration in most regions, in which the assimilation of satellite and in-situ data improves the mean biases and spatial distribution. Moreover, it improves the forecast skill of the surface concentration of PM10 and PM2.5. The results from the OSEs indicate that the assimilation of GOCI AOD only slightly enhances the forecast skill. However, most of the skill improvement comes from the surface PM assimilation, showing a practically useful level of skill until 12 hours from the initial state. The marginal improvement in the PM10 forecasts by the GOCI AOD suggests the non-negligible difference between column-representing AOD and the surface PM concentration.
引用
收藏
页码:1175 / 1194
页数:20
相关论文
共 11 条
  • [1] Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period
    Ha, Soyoung
    Liu, Zhiquan
    Sun, Wei
    Lee, Yonghee
    Chang, Limseok
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (10) : 6015 - 6036
  • [2] The Impact of the Direct Effect of Aerosols on Meteorology and Air Quality Using Aerosol Optical Depth Assimilation During the KORUS-AQ Campaign
    Jung, Jia
    Souri, Amir H.
    Wong, David C.
    Lee, Sojin
    Jeon, Wonbae
    Kim, Jhoon
    Choi, Yunsoo
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (14) : 8303 - 8319
  • [3] Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
    Gupta, Pawan
    Levy, Robert C.
    Mattoo, Shana
    Remer, Lorraine A.
    Holz, Robert E.
    Heidinger, Andrew K.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (12) : 6557 - 6577
  • [4] Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties
    LeBlanc, Samuel E.
    Segal-Rozenhaimer, Michal
    Redemann, Jens
    Flynn, Connor
    Johnson, Roy R.
    Dunagan, Stephen E.
    Dahlgren, Robert
    Kim, Jhoon
    Choi, Myungje
    da Silva, Arlindo
    Castellanos, Patricia
    Tan, Qian
    Ziemba, Luke
    Thornhill, Kenneth Lee
    Kacenelenbogen, Meloe
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (17) : 11275 - 11304
  • [5] Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns
    Lim, Hyunkwang
    Go, Sujung
    Kim, Jhoon
    Choi, Myungje
    Lee, Seoyoung
    Song, Chang-Keun
    Kasai, Yasuko
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (06) : 4575 - 4592
  • [6] Spectral and Spatial Dependencies in the Validation of Satellite-Based Aerosol Optical Depth from the Geostationary Ocean Color Imager Using the Aerosol Robotic Network
    Kim, Mijeong
    Lee, Kyunghwa
    Choi, Myungje
    [J]. REMOTE SENSING, 2023, 15 (14)
  • [7] Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign
    Choi, Myungje
    Lim, Hyunkwang
    Kim, Jhoon
    Lee, Seoyoung
    Eck, Thomas F.
    Holben, Brent N.
    Garay, Michael J.
    Hyer, Edward J.
    Saide, Pablo E.
    Liu, Hongqing
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (08) : 4619 - 4641
  • [8] Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations
    Zhai, Shixian
    Jacob, Daniel J.
    Brewer, Jared F.
    Li, Ke
    Moch, Jonathan M.
    Kim, Jhoon
    Lee, Seoyoung
    Lim, Hyunkwang
    Lee, Hyun Chul
    Kuk, Su Keun
    Park, Rokjin J.
    Jeong, Jaein, I
    Wang, Xuan
    Liu, Pengfei
    Luo, Gan
    Yu, Fangqun
    Meng, Jun
    Martin, Randall, V
    Travis, Katherine R.
    Hair, Johnathan W.
    Anderson, Bruce E.
    Dibb, Jack E.
    Jimenez, Jose L.
    Campuzano-Jost, Pedro
    Nault, Benjamin A.
    Woo, Jung-Hun
    Kim, Younha
    Zhang, Qiang
    Liao, Hong
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (22) : 16775 - 16791
  • [9] Aerosol optical depth variability in the northeastern Arabian sea during winter monsoon: a Study using in-situ and satellite measurements
    Chauhan, Prakash
    Sanwlani, Nivedita
    Navalgund, R. R.
    [J]. INDIAN JOURNAL OF MARINE SCIENCES, 2009, 38 (04): : 390 - 396
  • [10] Comparison of remote sensing aerosol optical depth from MODIS data with in-situ sky radiometer observations over East China Sea
    Li, Dong
    Chen, Wenzhong
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2010, 30 (10): : 2828 - 2836