DOUBLE ORE EXTENSIONS VERSUS ITERATED ORE EXTENSIONS

被引:13
|
作者
Carvalho, Paula A. A. B. [2 ]
Lopes, Samuel A. [2 ]
Matczuk, Jerzy [1 ]
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
[2] Univ Porto, Fac Ciencias, Dept Matemat, P-4100 Oporto, Portugal
关键词
Double Ore extensions; Iterated Ore extensions;
D O I
10.1080/00927872.2010.489532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the construction of new examples of Artin-Schelter regular algebras of global dimension four, Zhang and Zhang [6] introduced an algebra extension A(P)[y(1),y(2);sigma, delta, tau] of A, which they called a double Ore extension. This construction seems to be similar to that of a two-step iterated Ore extension over A. The aim of this article is to describe those double Ore extensions which can be presented as iterated Ore extensions of the form A[y(1);sigma(1),delta(1)][y(2);sigma(2),delta(2)]. We also give partial answers to some questions posed in Zhang and Zhang [6].
引用
收藏
页码:2838 / 2848
页数:11
相关论文
共 50 条
  • [1] Simplicity of iterated Ore extensions
    Balodi, Mamta
    Upadhyay, Sumit Kumar
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (03)
  • [2] Double Ore extensions versus graded skew PBW extensions
    Yair Gomez, James
    Suarez, Hector
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 185 - 197
  • [3] Double ore extensions
    Zhang, James J.
    Zhang, Jun
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (12) : 2668 - 2690
  • [4] Primality test in iterated ore extensions
    Bueso, JL
    Gómez-Torrecillas, J
    Lobillo, FJ
    Castro, FJ
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 1357 - 1371
  • [5] Primality test in iterated Ore extensions
    Bueso, JL
    Castro-Jiménez, FJ
    Gómez-Torrecillas, J
    Lobillo, FJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (06): : 459 - 462
  • [6] Iterated Hopf Ore extensions in positive characteristic
    Brown, Kenneth A.
    Zhang, James J.
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (03) : 787 - 837
  • [7] Connected Hopf algebras and iterated Ore extensions
    Brown, K. A.
    O'Hagan, S.
    Zhang, J. J.
    Zhuang, G.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2405 - 2433
  • [8] ORE EXTENSIONS OF ORE DOMAINS
    Chuang, Chen-Lian
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 481 - 502
  • [9] Fibers in Ore Extensions
    S. Paul Smith
    James J. Zhang
    [J]. Algebras and Representation Theory, 2002, 5 : 411 - 431
  • [10] Radicals in Ore extensions
    Kim, Nam Kyun
    Lee, Yang
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (09)