Spherical Tikhonov regularization wavelets in satellite gravity gradiometry with random noise

被引:14
|
作者
Freeden, W [1 ]
Pereverzev, S
机构
[1] Univ Kaiserslautern, Geomath Grp, D-67653 Kaiserslautern, Germany
[2] Kiev Inst Math, UA-252601 Kiev 4, Ukraine
关键词
ill-posed problem; regularization; wavelets; random noise; rate of convergence; satellite gravity gradiometry;
D O I
10.1007/s001900000141
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A special class of regularization methods for satellite gravity gradiometry based on Tikhonov spherical regularization wavelets is considered, with particular emphasis on the case of data blurred by random noise. A convergence rate is proved for the regularized solution, and a method is discussed for choosing the regularization level a posteriori from the gradiometer data.
引用
收藏
页码:730 / 736
页数:7
相关论文
共 50 条
  • [1] Spherical Tikhonov regularization wavelets in satellite gravity gradiometry with random noise
    W. Freeden
    S. Pereverzev
    [J]. Journal of Geodesy, 2001, 74 : 730 - 736
  • [2] Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues
    Ditmar, P
    Kusche, J
    Klees, R
    [J]. JOURNAL OF GEODESY, 2003, 77 (7-8) : 465 - 477
  • [3] Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues
    P. Ditmar
    J. Kusche
    R. Klees
    [J]. Journal of Geodesy, 2003, 77 : 465 - 477
  • [4] Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise
    Bissantz, N
    Hohage, T
    Munk, A
    [J]. INVERSE PROBLEMS, 2004, 20 (06) : 1773 - 1789
  • [5] Satellite gravity gradiometry with GOCE
    Rummel, R
    Müller, J
    Oberndorfer, H
    Sneeuw, N
    [J]. TOWARDS AN INTEGRATED GLOBAL GEODETIC OBSERVING SYSTEM (IGGOS), 2000, 120 : 66 - 72
  • [6] SPHERICAL HARMONIC SYNTHESIS AND LEAST-SQUARES COMPUTATIONS IN SATELLITE GRAVITY GRADIOMETRY
    BETTADPUR, SV
    SCHUTZ, BE
    LUNDBERG, JB
    [J]. BULLETIN GEODESIQUE, 1992, 66 (03): : 261 - 271
  • [7] ROSBOROUGH FORMULATION IN SATELLITE GRAVITY GRADIOMETRY
    Sharifi, Mohammad Ali
    Safari, Abdolreza
    Ghobadi-Far, Khosro
    [J]. ARTIFICIAL SATELLITES-JOURNAL OF PLANETARY GEODESY, 2013, 48 (01): : 39 - 50
  • [8] ONERA SATELLITE GRAVITY GRADIOMETRY PROJECT
    BERNARD, A
    [J]. RECHERCHE AEROSPATIALE, 1982, (01): : 51 - 56
  • [9] Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data
    P. Ditmar
    R. Klees
    F. Kostenko
    [J]. Journal of Geodesy, 2003, 76 : 690 - 705
  • [10] Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data
    Ditmar, P
    Klees, R
    Kostenko, F
    [J]. JOURNAL OF GEODESY, 2003, 76 (11-12) : 690 - 705