Sparse Pinball Twin Parametric Margin Support Vector Machine

被引:0
|
作者
Deepan, Urairat [1 ]
Kumam, Poom [1 ,2 ]
Chaipanya, Parin [1 ,2 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, KMUTT Fixed Point Res Lab,Sci Lab Bldg,Fixed Poin, Room SCL 802,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Theoret & Computat Sci Ctr, KMUTT Fixed Point Theory & Applicat Res Grp,Sci L, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 02期
关键词
Epsilon insensitive loss; noise insensitivity; Twin Parametric Support Vector Machine (TSVM);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to construct a twin parametric margin support vector machine combined an epsilon-insensitive loss function for finding a pair of parametric margin hyperplanes that automatically adapts to the parametric noise with arbitrary shape to capture the data structure more accurately. We exhaustively test several UCI datasets demonstrates that our SPTPMSVM is noise insensitive, retains sparsity in most cases. Finally, we present the numerical experiment and compare our model with other models.
引用
收藏
页码:607 / 622
页数:16
相关论文
共 50 条
  • [1] Twin-parametric margin support vector machine with truncated pinball loss
    Huiru Wang
    Yitian Xu
    Zhijian Zhou
    [J]. Neural Computing and Applications, 2021, 33 : 3781 - 3798
  • [2] Twin-parametric margin support vector machine with truncated pinball loss
    Wang, Huiru
    Xu, Yitian
    Zhou, Zhijian
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3781 - 3798
  • [3] Sparse pinball twin support vector machines
    Tanveer, M.
    Tiwari, Aruna
    Choudhary, Rahul
    Jalan, Sanchit
    [J]. APPLIED SOFT COMPUTING, 2019, 78 : 164 - 175
  • [4] Online Learning Approach Based on Recursive Formulation for Twin Support Vector Machine and Sparse Pinball Twin Support Vector Machine
    Shadiani, Abolfazl Hasanzadeh
    Shoorehdeli, Mahdi Aliyari
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (04) : 5143 - 5165
  • [5] Online Learning Approach Based on Recursive Formulation for Twin Support Vector Machine and Sparse Pinball Twin Support Vector Machine
    Abolfazl Hasanzadeh Shadiani
    Mahdi Aliyari Shoorehdeli
    [J]. Neural Processing Letters, 2023, 55 : 5143 - 5165
  • [6] Sparse support vector machine with pinball loss
    Tanveer, M.
    Sharma, S.
    Rastogi, R.
    Anand, P.
    [J]. Transactions on Emerging Telecommunications Technologies, 2021, 32 (02)
  • [7] Sparse support vector machine with pinball loss
    Tanveer, M.
    Sharma, S.
    Rastogi, R.
    Anand, P.
    [J]. TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (02):
  • [8] Sparse Pinball Twin Bounded Support Vector Clustering
    Tanveer, M.
    Tabish, M.
    Jangir, Jatin
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (06): : 1820 - 1829
  • [9] Improvements on twin parametric-margin support vector machine
    Peng, Xinjun
    Kong, Lingyan
    Chen, Dongjing
    [J]. NEUROCOMPUTING, 2015, 151 : 857 - 863
  • [10] Sparse Twin Support Vector Clustering Using Pinball Loss
    Tanveer, M.
    Gupta, Tarun
    Shah, Miten
    Richhariya, Bharat
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (10) : 3776 - 3783