DRY AIR COOLING AND THE sCO2 BRAYTON CYCLE

被引:0
|
作者
Sienicki, James J. [1 ]
Moisseytsev, Anton [1 ]
Lv, Qiuping [1 ]
机构
[1] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Commercially available and cost effective finned tube air coolers are an enabling technology that makes practical dry air cooling for the supercritical carbon dioxide (sCO(2)) Brayton cycle by which heat is directly rejected from CO2 to the air atmospheric heat sink. With dry air cooling, sCO(2) Brayton cycle conditions need to be re-optimized to increase the main compressor inlet temperature and pressure (e.g., 35 degrees C and 8.2 MPa) relative to water cooling to limit the air cooler size to a practical value, and to increase the compressor outlet pressure (e.g., 25 MPa) to maintain a high efficiency. With re optimization, the plant efficiency for the AFR-100 S odium Cooled Fast Reactor Nuclear Power Plant (NPP) is similar to that with once-through water cooling, while the NPP capital cost per unit output electrical power ($/kWe) is roughly estimated to be only 2 % greater. For the AFR-100 application, no unique benefit is identified for the sCO(2) Brayton cycle relative to the superheated steam cycle with respect to the capability to use dry air cooling.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] HEAT EXCHANGER OPTIONS FOR DRY AIR COOLING FOR THE SCO2 BRAYTON CYCLE
    Moisseytsev, Anton
    Lv, Qiuping
    Sienicki, James J.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 9, 2017,
  • [2] Numerical studies of sCO2 Brayton cycle
    Kriz, Daniel
    Vlcek, Petr
    Frybort, Otakar
    [J]. ENERGY, 2024, 296
  • [3] Comparison of direct and indirect natural draft dry cooling tower cooling of the sCO2 Brayton cycle for concentrated solar power plants
    Duniam, Sam
    Jahn, Ingo
    Hooman, Kamel
    Lu, Yuanshen
    Veeraragavan, Ananthanarayanan
    [J]. APPLIED THERMAL ENGINEERING, 2018, 130 : 1070 - 1080
  • [4] Exergoeconomic analysis of hybrid sCO2 Brayton power cycle
    Alenezi, A.
    Vesely, L.
    Kapat, J.
    [J]. ENERGY, 2022, 247
  • [5] ANALYSIS OF THERMAL TRANSIENTS FOR SCO2 BRAYTON CYCLE HEAT EXCHANGERS
    Moisseytsev, Anton
    Sienicki, James J.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 9, 2019,
  • [6] LOOP TRANSIENT PERFORMANCE WITH A CLOSED LOOP SCO2 BRAYTON CYCLE
    Cich, Stefan D.
    Moore, J. Jeffrey
    Towler, Meera Day
    Mortzheim, Jason
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 10, 2021,
  • [7] Configuration and Parameter Optimization of SCO2 Brayton Cycle System in Micro Reactor
    Liang T.
    Tang X.
    Qian Y.
    Zhao Q.
    Chen W.
    Yan J.
    [J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2023, 57 (09): : 1706 - 1719
  • [8] Equation of state based analytical formulation for optimization of sCO2 Brayton cycle
    Sathish, Sharath
    Kumar, Pramod
    [J]. JOURNAL OF SUPERCRITICAL FLUIDS, 2021, 177
  • [9] Design, optimization and thermodynamic analysis of SCO2 Brayton cycle system for FHR
    Yun, Shichang
    Zhang, Dalin
    Li, Xinyu
    Zhou, Xingguang
    Jiang, Dianqiang
    Lv, Xindi
    Wu, Wenqiang
    Feng, Zhenyu
    Min, Xin
    Tian, Wenxi
    Qiu, Suizheng
    Su, G. H.
    [J]. PROGRESS IN NUCLEAR ENERGY, 2023, 157
  • [10] Thermodynamic Performance Comparison and Optimization of sCO2 Brayton Cycle, tCO2 Brayton Cycle and tCO2 Rankine Cycle
    JIANG Yu
    ZHAN Li
    TIAN Xuelian
    NIE Changhua
    [J]. Journal of Thermal Science, 2023, 32 (02) : 611 - 627