Apply for Back-Propagation Neural Network to Control a GMA Welding Process

被引:0
|
作者
Son, Joon-sik [1 ]
Kim, Ill-soo [2 ]
Lee, Jong-pyo [2 ]
Park, Min-ho [2 ]
Kim, Do-hyeong [2 ]
Jin, Byeong-ju [2 ]
机构
[1] Res Inst Medium & Small Shipbldg, 1703-8 Yongang Ri, Yeongam 526897, Jeonnam, South Korea
[2] Mokpo Natl Univ, Grad Sch, Dept Mech Engn, 1666 Youngsan Ro, Muan Gun 534729, Jeonnam, South Korea
关键词
Robotic GMA welding; Back-propagation; Optimization; Genetic algorithm; Bead geometry prediction;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Recently, GMA (Gas Metal Arc) welding process has been automated in an attempt to gain high efficiency, high productivity and low costs. With the combination of sensors and mathematical models, increased effectiveness in control of the robotic welding process was achieved. As a result of these short-comings, much research and development works have been concentrated on sensing and control methods to enhance the robotic arc welding. This paper presents a new Genetic Algorithm (GA) to select the optimal architecture of the back-propagation neural network and compared with that of engineer's experience. It is shown that learning approach with the optimal structure of back-propagation neural network could be applied to predict the bead geometry such as bead width and bead height in robotic GMA welding process and compared between the bead geometry by calculated from the developed model and experimental results.
引用
收藏
页码:311 / 315
页数:5
相关论文
共 50 条
  • [1] Back-propagation neural network adaptive control of a continuous wastewater treatment process
    Syu, MJ
    Chen, BC
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (09) : 3625 - 3630
  • [2] A SENSITIVITY ANALYSIS OF A BACK-PROPAGATION NEURAL NETWORK FOR MANUFACTURING PROCESS PARAMETERS
    COOK, DF
    SHANNON, RE
    JOURNAL OF INTELLIGENT MANUFACTURING, 1991, 2 (03) : 155 - 163
  • [3] Prediction of bead geometry in pulsed GMA welding using back propagation neural network
    Kanti, K. Manikya
    Rao, P. Srinivasa
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 200 (1-3) : 300 - 305
  • [4] An Improved Back-Propagation Neural Network Algorithm
    Hao, Pan
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4586 - 4590
  • [5] Introducing the back-propagation into probabilistic neural network
    1600, Systems Engineering Society of China (34):
  • [6] A fuzzy neural network based on back-propagation
    Jin, Huang
    Quan, Gan
    Linhui, Cai
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 151 - +
  • [7] Voltage Control Based on a Back-Propagation Artificial Neural Network Algorithm
    Ramirez-Hernandez, Jazmin
    Juarez-Sandoval, Oswaldo-Ulises
    Hernandez-Gonzalez, Leobardo
    Hernandez-Ramirez, Abigail
    Olivares-Dominguez, Raul-Sebastian
    PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [8] Back-Propagation Neural Network Based Predictive Control for Biomimetic Robotic Fish
    Wang Ming
    Yu Junzhi
    Tan Min
    Yang Qinghai
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 5, 2008, : 430 - 434
  • [9] An Investigation of Back-propagation Neural Network on University Selection
    Maharani, Sitti Syarah
    Yaakob, Razali
    Udzir, Nur Izura
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS, AND CONTROL TECHNOLOGY (I4CT), 2015,
  • [10] A Novel Learning Algorithm of Back-propagation Neural Network
    Gong, Bing
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 411 - 414