Overview and advantages of the split-step method

被引:0
|
作者
Apithy, H [1 ]
Bouslimani, Y [1 ]
Hamam, H [1 ]
机构
[1] Univ Moncton, Fac Engn, Moncton, NB E1A 4E9, Canada
关键词
optical propagation; dispersion; split-step Fourier method; soliton; nonlinear effects; nonlinear Schrodinger equation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Many methods have been used to analyze light propagation in optical fibers. Recently, a new method called 'Split- Step Method' based on the Fourier transform has immerged. This method shows well the interplay between the dispersion and nonlinear effects in the optical fiber. We provide here an overview of the Split- Step Fourier Method and discuss about its advantages compared to some of the existing methods used for analyzing light propagation.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [1] COMPRESSIVE SPLIT-STEP FOURIER METHOD
    Bayindir, C.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (02): : 298 - 306
  • [2] MIGRATION USING THE SPLIT-STEP FOURIER METHOD
    FREIRE, R
    STOFFA, PL
    GEOPHYSICS, 1987, 52 (03) : 402 - 403
  • [3] EXPLICIT SPLIT-STEP PROPAGATING BEAM METHOD
    MCMULLIN, JN
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1994, 6 (04) : 534 - 536
  • [4] Lagrangian Split-Step Method for Viscoelastic Flows
    Basic, Martina
    Blagojevic, Branko
    Klarin, Branko
    Peng, Chong
    Basic, Josip
    POLYMERS, 2024, 16 (14)
  • [5] Parallel Split-Step Method for Digital Backpropagation
    Guiomar, Fernando P.
    Amado, Sofia B.
    Martins, Celestino S.
    Pinto, Armando N.
    2015 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2015,
  • [6] Split-step θ-method for stochastic delay differential equations
    Cao, Wanrong
    Hao, Peng
    Zhang, Zhongqiang
    APPLIED NUMERICAL MATHEMATICS, 2014, 76 : 19 - 33
  • [7] Improved split-step method for efficient fibre simulations
    Plura, M
    Kissing, J
    Gunkel, M
    Lenge, J
    Elbers, JP
    Glingener, C
    Schulz, D
    Voges, E
    ELECTRONICS LETTERS, 2001, 37 (05) : 286 - 287
  • [8] Split-step Fourier method for nonlinear Schrodinger equation
    Bogomolov, Ya. L.
    Yunakovsky, A. D.
    Proceedings of the International Conference Days on Diffraction 2006, 2006, : 34 - 42
  • [9] Split-Step Parabolic Equation Method: A Comparative Study
    Omaki, Nobutaka
    Yun, Zhengqing
    Iskander, Magdy F.
    2012 IEEE INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION TECHNOLOGY AND SYSTEMS (ICWITS), 2012,