Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding

被引:283
|
作者
Malik, Mehul [1 ]
O'Sullivan, Malcolm [1 ]
Rodenburg, Brandon [1 ]
Mirhosseini, Mohammad [1 ]
Leach, Jonathan [2 ]
Lavery, Martin P. J. [3 ]
Padgett, Miles J. [3 ]
Boyd, Robert W. [1 ,2 ]
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[2] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[3] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
来源
OPTICS EXPRESS | 2012年 / 20卷 / 12期
关键词
QUANTUM KEY DISTRIBUTION; PROPAGATION;
D O I
10.1364/OE.20.013195
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology. (C) 2012 Optical Society of America
引用
收藏
页码:13195 / 13200
页数:6
相关论文
共 50 条
  • [1] Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives
    Li, Shuhui
    Chen, Shi
    Gao, Chunqing
    Willner, Alan E.
    Wang, Jian
    [J]. OPTICS COMMUNICATIONS, 2018, 408 : 68 - 81
  • [3] Twisted optical communications using orbital angular momentum
    Jian Wang
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [4] Optical communications using orbital angular momentum beams
    Willner, A. E.
    Huang, H.
    Yan, Y.
    Ren, Y.
    Ahmed, N.
    Xie, G.
    Bao, C.
    Li, L.
    Cao, Y.
    Zhao, Z.
    Wang, J.
    Lavery, M. P. J.
    Tur, M.
    Ramachandran, S.
    Molisch, A. F.
    Ashrafi, N.
    Ashrafi, S.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (01): : 66 - 106
  • [5] Twisted optical communications using orbital angular momentum
    Wang, Jian
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (03)
  • [6] Atmospheric turbulence and orbital angular momentum of single photons for optical communication
    Paterson, C
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (15)
  • [7] Influence of atmospheric turbulence on states of light carrying orbital angular momentum
    Rodenburg, Brandon
    Lavery, Martin P. J.
    Malik, Mehul
    O'Sullivan, Malcolm N.
    Mirhosseini, Mohammad
    Robertson, David J.
    Padgett, Miles
    Boyd, Robert W.
    [J]. OPTICS LETTERS, 2012, 37 (17) : 3735 - 3737
  • [8] Orbital angular momentum receiver bandwidth for laser communications systems operating in atmospheric turbulence
    Vetelino, Frida E. Stroemqvist
    Morgan, Ricky J.
    [J]. ATMOSPHERIC PROPAGATION VIII, 2011, 8038
  • [9] Encoding information as orbital angular momentum states of light for wireless optical communications
    Wu, Jingzhi
    Li, Hui
    Li, Yangjun
    [J]. OPTICAL ENGINEERING, 2007, 46 (01)
  • [10] Measurement and limitations of optical orbital angular momentum through corrected atmospheric turbulence
    Neo, Richard
    Goodwin, Michael
    Zheng, Jessica
    Lawrence, Jon
    Leon-Saval, Sergio
    Bland-Hawthorn, Joss
    Molina-Terriza, Gabriel
    [J]. OPTICS EXPRESS, 2016, 24 (03): : 2919 - 2930