cure model;
nonparametric;
profile likelihood;
observed information matrix;
radiation therapy;
D O I:
10.1016/S0895-7177(00)00312-5
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Standard errors for the maximum likelihood estimates of the regression parameters in the logistic-proportional-hazards cure model are proposed using an approximate profile likelihood approach and a nonparametric likelihood. Two methods are given and are compared with the standard errors obtained from the inverse of the joint observed information matrix of the regression parameters and the nuisance hazard parameters. The observed information matrix is derived and is shown to be all approximation of the conditional information matrix of the regression parameters given the hazard parameters. Simulations indicate that the standard errors obtained from the inverse of the observed information matrix based oil the profile likelihood and the full likelihood are comparable and appropriate. The coverage rates for the logistic regression parameter are generally good. The proportional hazards regression parameter show reasonable coverage rates under ideal conditions but lower coverage rates when the incidence proportion is low or when censoring is heavy. The three methods are applied to a data set to investigate the effects of radiation therapy on tonsil cancer. (C) 2001 Elsevier Science Ltd. All rights reserved.
机构:
K&L Consulting Serv Inc, Ft Washington, PA 19034 USAK&L Consulting Serv Inc, Ft Washington, PA 19034 USA
Wu, Yu
Lin, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Sch Publ Hlth, Dept Biostat, Piscataway, NJ 08854 USA
Rutgers State Univ, Rutgers Canc Inst New Jersey, Div Biometr, New Brunswick, NJ 08901 USAK&L Consulting Serv Inc, Ft Washington, PA 19034 USA
Lin, Yong
Lu, Shou-En
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Sch Publ Hlth, Dept Biostat, Piscataway, NJ 08854 USA
Rutgers State Univ, Rutgers Canc Inst New Jersey, Div Biometr, New Brunswick, NJ 08901 USAK&L Consulting Serv Inc, Ft Washington, PA 19034 USA
Lu, Shou-En
Li, Chin-Shang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Publ Hlth Sci, Div Biostat, Davis, CA 95616 USAK&L Consulting Serv Inc, Ft Washington, PA 19034 USA
Li, Chin-Shang
Shih, Weichung Joe
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Sch Publ Hlth, Dept Biostat, Piscataway, NJ 08854 USA
Rutgers State Univ, Rutgers Canc Inst New Jersey, Div Biometr, New Brunswick, NJ 08901 USAK&L Consulting Serv Inc, Ft Washington, PA 19034 USA
机构:
Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
Wang, Bing
Li, Jialiang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Duke Univ NUS Grad Med Sch, Singapore Eye Res Inst, Dept Stat & Appl Probabil, Singapore, SingaporeDalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
Li, Jialiang
Wang, Xiaoguang
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian, Peoples R China