To increase electrochemical performance of electrode material by attaching activated carbon particles on reduced graphene oxide sheets for supercapacitor

被引:50
|
作者
Wang, Jiaqi [1 ]
Li, Qiang [1 ]
Peng, Cheng [1 ]
Shu, Na [2 ,3 ]
Niu, Liang [1 ]
Zhu, Yanwu [2 ,3 ]
机构
[1] Hefei Univ Technol, Sch Elect Sci & Appl Phys, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Reduced graphene oxide; Activated carbon particles; Synergistic effect; Low cost; Supercapacitor; COMPOSITE ELECTRODES; SURFACE-AREA; HIGH-POWER; ENERGY; CAPACITANCE; PROGRESS; DENSITY; STORAGE; ANODES; WASTE;
D O I
10.1016/j.jpowsour.2019.227611
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A convenient and scalable method is developed to attach the activated carbon particles (ACP) on the surface of reduced graphene oxide (rGO) sheets. The rGO sheets are beneficial for improving the electrochemical performance of the ACP, while ACP can effectively suppress the aggregation of the rGO sheets. Therefore, the symmetric supercapacitor based on this composite (RGO-ACP3) electrode delivers high specific capacitance of 116.88 F g(-1) at current density of 0.5 A g(-1) in 1 M H2SO4 electrolyte, and has a high capacitance retention of 97.85% after 8000 cycles at 5 A g(-1). More importantly, from the perspective of ACP, adding a portion of rGO to three low-cost ACP can increase the specific capacitance of the electrode material by 58.2%. It also provides high energy density of 11.90 W h kg(-1) at power density of 469.24 W kg(-1) in 1 M Na2SO4 electrolyte. In addition, the special capacitance contributed byrGO in the RGO-ACP15 reaches up to 541 F g(-1) at 0.5 A g(-1) in 1 M H2SO4. The results indicate that the synergistic effect betweenrGO sheets and ACP,makes RGO-ACP3 a promising low cost electrode material for high performance supercapacitors.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Synergistic electrochemical performance of textile sludge based activated carbon with reduced graphene oxide as electrode for supercapacitor application
    Khan, Naveed Ahmed
    Jahan, Zaib
    Iqbal, Naseem
    Niazi, Muhammad Bilal
    Mehek, Rimsha
    WASTE MANAGEMENT, 2025, 191 : 274 - 283
  • [2] Covalently linked 4-Aminopyridine on reduced graphene oxide for high performance electrochemical supercapacitor electrode material
    Srinivasan, Sibi
    Kittappa, Gunasundari
    Sundramoorthy, Ashok K.
    Rajendran, Ganesh Kumar
    Nesakumar, Noel
    Gunasekaran, Balu Mahendran
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1321
  • [3] Comparative electrochemical performance evaluation of chemically (CRG) and hydrothermally (HRG) reduced graphene oxide as supercapacitor electrode material
    Subhakaran Singh Rajaputra
    Anjaneyulu Nagalakshmi P
    Ionics, 2021, 27 : 4069 - 4082
  • [4] Comparative electrochemical performance evaluation of chemically (CRG) and hydrothermally (HRG) reduced graphene oxide as supercapacitor electrode material
    Rajaputra, Subhakaran Singh
    Nagalakshmi, P.
    Yerramilli, Anjaneyulu
    Mahesh, Naga K.
    IONICS, 2021, 27 (09) : 4069 - 4082
  • [5] Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material
    Zhi-Hang Wang
    Jia-Ying Yang
    Xiong-Wei Wu
    Xiao-Qing Chen
    Jin-Gang Yu
    Yu-Ping Wu
    Journal of Nanoparticle Research, 2017, 19
  • [6] Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material
    Wang, Zhi-Hang
    Yang, Jia-Ying
    Wu, Xiong-Wei
    Chen, Xiao-Qing
    Yu, Jin-Gang
    Wu, Yu-Ping
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (02)
  • [7] Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor
    Li, Xing
    Tang, Yao
    Song, Junhua
    Yang, Wei
    Wang, Mingshan
    Zhu, Chengzhou
    Zhao, Wengao
    Zheng, Jianming
    Lin, Yuehe
    CARBON, 2018, 129 : 236 - 244
  • [8] Covalently anchored benzimidazole-reduced graphene oxide as efficient electrochemical supercapacitor electrode material
    Gunasekaran, Balu Mahendran
    Manoj, Shanmugasundaram
    Rajendran, Ganesh Kumar
    Muthiah, Senthilkumar
    Nesakumar, Noel
    Sivanesan, Jothi Ramalingam
    Srinivasan, Soorya
    Gunasekaran, Arun Kumar
    Gopu, Gopalakrishnan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (36)
  • [9] Covalently anchored benzimidazole-reduced graphene oxide as efficient electrochemical supercapacitor electrode material
    Balu Mahendran Gunasekaran
    Shanmugasundaram Manoj
    Ganesh Kumar Rajendran
    Senthilkumar Muthiah
    Noel Nesakumar
    Jothi Ramalingam Sivanesan
    Soorya Srinivasan
    Arun Kumar Gunasekaran
    Gopalakrishnan Gopu
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [10] Activated carbon aerogel containing graphene as electrode material for supercapacitor
    Lee, Yoon Jae
    Kim, Gil-Pyo
    Bang, Yongju
    Yi, Jongheop
    Seo, Jeong Gil
    Song, In Kyu
    MATERIALS RESEARCH BULLETIN, 2014, 50 : 240 - 245