Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer

被引:71
|
作者
Fang, Jiannong [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, Inst Environm Engn IIE, Sch Architecture Civil & Environm Engn ENAC, CH-1015 Lausanne, Switzerland
关键词
Large-eddy simulation; Turbulent boundary layer; Coherent structures; Very-large-scale motions; IMAGE VELOCIMETRY MEASUREMENTS; DEPENDENT DYNAMIC-MODEL; TURBULENT CHANNEL FLOW; COHERENT STRUCTURES; SURFACE-ROUGHNESS; SHEAR-STRESS; WALL; IMPLEMENTATION; MODULATION; CONVECTION;
D O I
10.1007/s10546-015-0006-z
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Large-eddy simulation is used to investigate very-large-scale motions (VLSMs) in the neutrally stratified atmospheric boundary layer at a very high friction Reynolds number, . The vertical height of the computational domain is m, which corresponds to the thickness of the boundary layer. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be and , which is much larger than the standard domain size, especially in the streamwise direction (i.e., the direction of elongation of the flow structures). It is shown that the contributions to the resolved turbulent kinetic energy and the resolved shear stress from streamwise wavelengths larger than are up to 27 and 31 % respectively. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large, up to in the streamwise direction and in the spanwise direction. These features are similar to those found in the logarithmic and outer regions of laboratory-scale boundary layers by direct numerical simulation and experiments conducted at low to moderate Reynolds numbers. The three-dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the cross-section perpendicular to the streamwise direction. These results are in agreement with recent observations in the atmospheric surface layer.
引用
收藏
页码:397 / 416
页数:20
相关论文
共 50 条
  • [1] Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer
    Jiannong Fang
    Fernando Porté-Agel
    [J]. Boundary-Layer Meteorology, 2015, 155 : 397 - 416
  • [2] Very-large-scale motions in a turbulent boundary layer
    Lee, Jae Hwa
    Sung, Hyung Jin
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 673 : 80 - 120
  • [3] Very-large-scale motions in a turbulent boundary layer
    Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-Gu, Daejeon 305-701, Korea, Republic of
    [J]. J. Fluid Mech., 1600, (80-120):
  • [4] Large-Eddy Simulation of the Atmospheric Boundary Layer
    Rob Stoll
    Jeremy A. Gibbs
    Scott T. Salesky
    William Anderson
    Marc Calaf
    [J]. Boundary-Layer Meteorology, 2020, 177 : 541 - 581
  • [5] Large-Eddy Simulation of the Atmospheric Boundary Layer
    Stoll, Rob
    Gibbs, Jeremy A.
    Salesky, Scott T.
    Anderson, William
    Calaf, Marc
    [J]. BOUNDARY-LAYER METEOROLOGY, 2020, 177 (2-3) : 541 - 581
  • [6] Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
    Lu, Hao
    Porte-Agel, Fernando
    [J]. PHYSICS OF FLUIDS, 2011, 23 (06)
  • [7] LARGE-EDDY SIMULATION OF A NEUTRALLY STRATIFIED BOUNDARY-LAYER - A COMPARISON OF 4 COMPUTER CODES
    ANDREN, A
    BROWN, AR
    GRAF, J
    MASON, PJ
    MOENG, CH
    NIEUWSTADT, FTM
    SCHUMANN, U
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1994, 120 (520) : 1457 - 1484
  • [8] LARGE-EDDY SIMULATION OF THE STABLY-STRATIFIED ATMOSPHERIC BOUNDARY-LAYER
    MASON, PJ
    DERBYSHIRE, SH
    [J]. BOUNDARY-LAYER METEOROLOGY, 1990, 53 (1-2) : 117 - 162
  • [9] Study of near-surface models for large-eddy simulations of a neutrally stratified atmospheric boundary layer
    Inanc Senocak
    Andrew S. Ackerman
    Michael P. Kirkpatrick
    David E. Stevens
    Nagi N. Mansour
    [J]. Boundary-Layer Meteorology, 2007, 124 : 405 - 424
  • [10] Study of near-surface models for large-eddy simulations of a neutrally stratified atmospheric boundary layer
    Senocak, Inanc
    Ackerman, Andrew S.
    Kirkpatrick, Michael P.
    Stevens, David E.
    Mansour, Nagi N.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2007, 124 (03) : 405 - 424