Silene vulgaris (Moench) Garcke has evolved populations with extremely high levels of copper tolerance. To evaluate the role of metallothioneins (MTs) in copper tolerance in S. vulgaris, we screened a cDNA library derived from a highly copper-tolerant population using Arabidopsis-based MT probes and identified an MT2b-like gene. When expressed in yeast, this gene, SvMT2b, restored cadmium and copper tolerance in different hypersensitive strains. Northern-blot analysis and quantitative reverse transcriptase-PCR showed that plants from the copper-tolerant S. vulgaris populations had significantly higher transcript levels of SvMT2b than plants from the copper-sensitive populations, both in roots and shoots and with and without copper exposure. Southern-blot analysis suggested that the higher expression of the latter allele was caused by gene amplification. Segregating families of crosses between copper-sensitive and copper-tolerant plants exhibited a 1 to 3 segregation for SvMT2b expression. Allele-specific PCR showed that low-expression F-3 plants were homozygous for the allele inherited from the copper-sensitive parent, whereas high-expression plants possessed at least one allele from the tolerant parent. SvMT2b expression did not cosegregate with copper tolerance in crosses between sensitive and tolerant plants. However, a significant cosegregation with copper tolerance did occur in families derived from crosses between moderately tolerant F-3 plants with different SvMT2b genotypes. Thus, overexpression of SvMT2b conferred copper tolerance although only within the genetic background of a copper tolerant plant.