DNMT1, a Novel Regulator Mediating mTORC1/mTORC2 Pathway-Induced NGF Expression in Schwann Cells

被引:14
|
作者
Cheng, Meijuan [1 ]
Lv, Xin [1 ]
Zhang, Cuihong [1 ,2 ]
Du, Wei [1 ]
Liu, Yaping [1 ]
Zhu, Lin [1 ,3 ]
Hao, Jun [1 ]
机构
[1] Hebei Med Univ, Dept Pathol, Shijiazhuang 050017, Hebei, Peoples R China
[2] Bethune Int Peace Hosp, Dept Radiat Oncol, Shijiazhuang 050051, Hebei, Peoples R China
[3] Hebei Med Univ, Hosp 3, Dept Electromyogram, Shijiazhuang 050051, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
mTOR; S6K1; DNMT1; NGF; Schwann cell; MTOR; METABOLISM; MECHANISMS;
D O I
10.1007/s11064-018-2637-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Schwann cells play an important role in maintaining the normal function of peripheral nerves via the secretion of nerve growth factor (NGF). The mTOR signaling pathway is known as a kind of Ser/Thr protein kinase that regulates various cell functions. DNA methyltransferase 1 (DNMT1) is an epigenetic regulator and downstream target of the mTOR pathway. In the present study, we explored the relationship between NGF expression and the mTOR pathway/DNMT1 in RSC96 cells. The results showed that both rapamycin and Torin 1 downregulated NGF expression via the inhibition of phospho-mTOR (Ser 2448) and phospho-S6K1 (Thr 389). Similarly, the silencing of RAPTOR and RICTOR decreased NGF expression by 56.7% and 52.4%, respectively, in RSC96 cells compared with the control siRNA treatment, which was accompanied by reduced phospho-S6K1 (Thr 389). The mTOR/S6K1 activator MHY1485 increased NGF expression by 28.7% and 17.1% 1day and 2day after stimulation, respectively, compared to the corresponding control group in RSC96 cells. Furthermore, DNMT1 was enhanced by 94.5% and 42.5% with mTOR pathway inhibitor (rapamycin and Torin 1, respectively) treatment for 3day compared with the control group. Additionally, the inhibition of DNMT1 with a chemical inhibitor or a specific shRNA plasmid upregulated NGF in RSC96 cells. In summary, our findings suggest that DNMT1 is the downstream target of the mTOR pathway and mediates the mTOR pathway inhibition-induced reduction in NGF expression in Schwann cells. Activation of the mTOR signaling pathway and/or inhibition of DNMT1 increased NGF expression, which may benefit patients suffering from NGF deficiencies, such as diabetic peripheral neuropathy.
引用
收藏
页码:2141 / 2154
页数:14
相关论文
共 50 条
  • [1] DNMT1, a Novel Regulator Mediating mTORC1/mTORC2 Pathway-Induced NGF Expression in Schwann Cells
    Meijuan Cheng
    Xin Lv
    Cuihong Zhang
    Wei Du
    Yaping Liu
    Lin Zhu
    Jun Hao
    Neurochemical Research, 2018, 43 : 2141 - 2154
  • [2] Novel inhibitors of mTORC1 and mTORC2
    Bhagwat, Shripad V.
    Crew, Andrew P.
    CURRENT OPINION IN INVESTIGATIONAL DRUGS, 2010, 11 (06) : 638 - 645
  • [3] mTORC1 and mTORC2 expression in inner retinal neurons and glial cells
    Losiewicz, Mandy K.
    Elghazi, Lynda
    Fingar, Diane C.
    Rajala, Raju V. S.
    Lentz, Stephen, I
    Fort, Patrice E.
    Abcouwer, Steven F.
    Gardner, Thomas W.
    EXPERIMENTAL EYE RESEARCH, 2020, 197
  • [4] Loss of mTORC1 & mTORC2 but nor mTORC1 or mTORC2 leads to reduction in cone function.
    Ma, Shan
    Venkatesh, Aditya
    Punzo, Claudio
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [5] The role of mTORC1 and mTORC2 in UVB-induced
    Lewis, Martha
    Shantz, Lisa
    FASEB JOURNAL, 2013, 27
  • [6] mTORC1 and mTORC2 in cancer and the tumor microenvironment
    L C Kim
    R S Cook
    J Chen
    Oncogene, 2017, 36 : 2191 - 2201
  • [7] mTORC1 and mTORC2 in cancer and the tumor microenvironment
    Kim, L. C.
    Cook, R. S.
    Chen, J.
    ONCOGENE, 2017, 36 (16) : 2191 - 2201
  • [8] REGULATION AND METABOLIC FUNCTIONS OF mTORC1 AND mTORC2
    Szwed, Angelia
    Kim, Eugene
    Jacinto, Estela
    PHYSIOLOGICAL REVIEWS, 2021, 101 (03) : 1371 - 1426
  • [9] mTORC1 and mTORC2 differentially regulate the development of NK cells
    Yang, Chao
    Siebert, Jason
    Thakar, Monica
    Malarkannan, Subramaniam
    JOURNAL OF IMMUNOLOGY, 2018, 200 (01):
  • [10] mTORC1/mTORC2 SIGNALING IN PILOCYTIC ASTROCYTOMA
    Hutt, Marianne
    Karajannis, Matthias A.
    Shah, Smit
    Eberhart, Charles G.
    Raabe, Eric
    Rodriguez, Fausto J.
    NEURO-ONCOLOGY, 2013, 15 : 48 - 48