Uncertainty Quantification of Differential Algebraic Equations Using Polynomial Chaos

被引:0
|
作者
Saha, Premjit [1 ]
Singh, Tarunraj [1 ]
Dargush, Gary [1 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
来源
基金
美国国家科学基金会;
关键词
Resonant circuits - Monte Carlo methods - Pendulums - Polynomials - Circuit resonance - Stochastic systems;
D O I
10.1115/1.4051821
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The focus of this paper is on the use of polynomial chaos (PC) for developing surrogate models for differential algebraic equations (DAEs) with time-invariant uncertainties. Intrusive and nonintrusive approaches to synthesize PC surrogate models are presented including the use of Lagrange interpolation polynomials as basis functions. Unlike ordinary differential equations (ODEs), if the algebraic constraints are a function of the stochastic variable, some initial conditions of the DAEs are also random. A benchmark RLC circuit which is used as a benchmark for linear models is used to illustrate the development of a PC-based surrogate model. A nonlinear example of a simple pendulum also serves as a benchmark to illustrate the potential of the proposed approach. Statistics of the results of the PC models are validated using Monte Carlo (MC) simulations in addition to estimating the evolving probably density functions (PDFs) of the states of the pendulum.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1
    Pulch, Roland
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (01) : 1 - 23
  • [2] POLYNOMIAL CHAOS FOR LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS WITH RANDOM PARAMETERS
    Pulch, Roland
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2011, 1 (03) : 223 - 240
  • [3] Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
    Santonja, F.
    Chen-Charpentier, B.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012
  • [4] Uncertainty Quantification of Radio Propagation Using Polynomial Chaos
    Enstedt, Mattias
    Wellander, Niklas
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2016, 50 : 205 - 213
  • [5] Polynomial chaos for multirate partial differential algebraic equations with random parameters
    Pulch, Roland
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2610 - 2624
  • [6] The method of uncertainty quantification and minimization using polynomial chaos expansions
    Sheen, David A.
    Wang, Hai
    [J]. COMBUSTION AND FLAME, 2011, 158 (12) : 2358 - 2374
  • [7] Uncertainty quantification of tunable elastic metamaterials using polynomial chaos
    Al Ba'ba'a, H.
    Nandi, S.
    Singh, T.
    Nouh, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 127 (01)
  • [8] Uncertainty Quantification in Molecular Signals Using Polynomial Chaos Expansion
    Abbaszadeh M.
    Moutsinas G.
    Thomas P.J.
    Guo W.
    [J]. Guo, Weisi (weisi.guo@warwick.ac.uk), 2018, Institute of Electrical and Electronics Engineers Inc., United States (04): : 248 - 256
  • [9] UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION
    Sepahvand, K.
    Marburg, S.
    Hardtke, H. -J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (02) : 305 - 353
  • [10] Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions
    DeGennaro, Anthony M.
    Rowley, Clarence W.
    Martinelli, Luigi
    [J]. JOURNAL OF AIRCRAFT, 2015, 52 (05): : 1404 - 1411