Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

被引:38
|
作者
Luong, Hung Truyen [1 ]
Goo, Nam Seo [1 ]
机构
[1] Konkuk Univ, Dept Adv Technol Fus, Smart Microsyst Res Lab, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
ENERGY; POWER;
D O I
10.1088/0964-1726/21/2/025017
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device's input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill's frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Design of a Magnetic Force Exciter for a Small-Scale Windmill using a Piezo-Composite Generating Element
    Luong, Hung Truyen
    Goo, Nam Seo
    [J]. ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2011, 2011, 7977
  • [2] Small-scale modular windmill
    Bressers, Scott
    Avirovik, Dragon
    Vernieri, Chris
    Regan, Jess
    Chappell, Stephen
    Hotze, Mark
    Luhman, Stephen
    Lallart, Mickael
    Inman, Daniel
    Priya, Shashank
    [J]. AMERICAN CERAMIC SOCIETY BULLETIN, 2010, 89 (08): : 34 - 40
  • [3] Use of a Piezocomposite Generating Element in Energy Harvesting
    Tien, Cam Minh Tri
    Goo, Nam Seo
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (14) : 1427 - 1436
  • [4] GENERATING PROFITS ON A SMALL-SCALE
    WYMAN, V
    LUCAS, D
    [J]. ENGINEER, 1983, 257 (6646) : 26 - 27
  • [5] Performance of multiple energy harvesting elements in a small-scale windmill
    Hung Truyen Luong
    Nam Seo Goo
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS, 2013, 1 (03) : 215 - 227
  • [6] Small-scale Timoshenko beam element
    Ansari, R.
    Shojaei, M. Faghih
    Rouhi, H.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2015, 53 : 19 - 33
  • [7] Small-Scale Solar Magnetic Fields
    A. G. de Wijn
    J. O. Stenflo
    S. K. Solanki
    S. Tsuneta
    [J]. Space Science Reviews, 2009, 144 : 275 - 315
  • [8] SMALL-SCALE MAGNETIC DISTURBANCES - WAVES OR SMALL-SCALE FIELD-ALIGNED CURRENTS
    NENOVSKI, P
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1991, 44 (10): : 47 - 50
  • [9] Cancelation of small-scale magnetic features
    Kaithakkal, A. J.
    Solanki, S. K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [10] Small-Scale Solar Magnetic Fields
    de Wijn, A. G.
    Stenflo, J. O.
    Solanki, S. K.
    Tsuneta, S.
    [J]. SPACE SCIENCE REVIEWS, 2009, 144 (1-4) : 275 - 315