Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution

被引:88
|
作者
Zhang, Jiawei [1 ,3 ]
Pan, Jinshan [2 ]
Lai, Wei-Sheng [3 ]
Lau, Rynson W. H. [1 ]
Yang, Ming-Hsuan [3 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
[3] Univ Calif, Elect Engn & Comp Sci, Merced, CA 95340 USA
基金
中国国家自然科学基金;
关键词
FIELDS;
D O I
10.1109/CVPR.2017.737
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a fully convolutional network for iterative non-blind deconvolution. We decompose the non-blind deconvolution problem into image denoising and image deconvolution. We train a FCNN to remove noise in the gradient domain and use the learned gradients to guide the image deconvolution step. In contrast to the existing deep neural network based methods, we iteratively deconvolve the blurred images in a multi-stage framework. The proposed method is able to learn an adaptive image prior, which keeps both local (details) and global (structures) information. Both quantitative and qualitative evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of quality and speed.
引用
收藏
页码:6969 / 6977
页数:9
相关论文
共 50 条
  • [1] Multi-scale Convolutional Neural Networks for Non-blind Image Deconvolution
    Wang, Xuehui
    Dai, Feng
    Suo, Jinli
    Zhang, Yongdong
    Dai, Qionghai
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 911 - 919
  • [2] A machine learning approach for non-blind image deconvolution
    Schuler, Christian J.
    Burger, Harold Christopher
    Harmeling, Stefan
    Schoelkopf, Bernhard
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1067 - 1074
  • [3] The Secrets of Non-Blind Poisson Deconvolution
    Gnanasambandam, Abhiram
    Sanghvi, Yash
    Chan, Stanley H.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 343 - 356
  • [4] Learning Deep Non-blind Image Deconvolution Without Ground Truths
    Quan, Yuhui
    Chen, Zhuojie
    Zheng, Huan
    Ji, Hui
    [J]. COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 642 - 659
  • [5] MODELING REALISTIC DEGRADATIONS IN NON-BLIND DECONVOLUTION
    Anger, Jeremy
    Delbracio, Mauricio
    Facciolo, Gabriele
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 978 - 982
  • [6] Non-blind Image Deconvolution with Adaptive Regularization
    Lee, Jong-Ho
    Ho, Yo-Sung
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 719 - 730
  • [7] Algorithm and Constraints for Exact Non-blind Deconvolution
    Lamash, Yechiel
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (05) : 692 - 706
  • [8] Algorithm and Constraints for Exact Non-blind Deconvolution
    Yechiel Lamash
    [J]. Journal of Mathematical Imaging and Vision, 2018, 60 : 692 - 706
  • [9] Handling Outliers in Non-Blind Image Deconvolution
    Cho, Sunghyun
    Wang, Jue
    Lee, Seungyong
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 495 - 502
  • [10] Subspace-based non-blind deconvolution
    Zhuang, Peixian
    Ding, Xinghao
    Duan, Jinming
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (04) : 2202 - 2218