Target Type Identification for Entity-Bearing Queries

被引:10
|
作者
Garigliotti, Dario [1 ]
Hasibi, Faegheh [2 ]
Balog, Krisztian [1 ]
机构
[1] Univ Stavanger, Stavanger, Norway
[2] Norwegian Univ Sci & Technol, Trondheim, Norway
关键词
Query understanding; query types; entity search; semantic search;
D O I
10.1145/3077136.3080659
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying the target types of entity-bearing queries can help improve retrieval performance as well as the overall search experience. In this work, we address the problem of automatically detecting the target types of a query with respect to a type taxonomy. We propose a supervised learning approach with a rich variety of features. Using a purpose-built test collection, we show that our approach outperforms existing methods by a remarkable margin.
引用
收藏
页码:845 / 848
页数:4
相关论文
共 50 条
  • [1] Latent entity space: a novel retrieval approach for entity-bearing queries
    Xitong Liu
    Hui Fang
    [J]. Information Retrieval Journal, 2015, 18 : 473 - 503
  • [2] Latent entity space: a novel retrieval approach for entity-bearing queries
    Liu, Xitong
    Fang, Hui
    [J]. INFORMATION RETRIEVAL JOURNAL, 2015, 18 (06): : 473 - 503
  • [3] Entity Type Disambiguation in User Queries
    Bazzanella, Barbara
    Stoermer, Heiko
    Bouquet, Paolo
    [J]. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2011, 10 (03) : 209 - 224
  • [4] Intent Identification and Entity Extraction for Healthcare Queries in Indic Languages
    Mullick, Ankan
    Mondal, Ishani
    Ray, Sourjyadip
    Raghav, R.
    Chaitanya, G. Sai
    Goyal, Pawan
    [J]. 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1870 - 1881
  • [5] Intent Identification and Entity Extraction for Healthcare Queries in Indic Languages
    Mullick, Ankan
    Mondal, Ishani
    Ray, Sourjyadip
    Raghav, R.
    Sai Chaitanya, G.
    Goyal, Pawan
    [J]. arXiv, 2023,
  • [6] ENTITY RANKING FOR DESCRIPTIVE QUERIES
    Hong, Kai
    Pei, Pengjun
    Wang, Ye-Yi
    Hakkani-Tur, Dilek
    [J]. 2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 200 - 205
  • [7] Identifying and exploiting target entity type information for ad hoc entity retrieval
    Garigliotti, Dario
    Hasibi, Faegheh
    Balog, Krisztian
    [J]. INFORMATION RETRIEVAL JOURNAL, 2019, 22 (3-4): : 285 - 323
  • [8] Identifying and exploiting target entity type information for ad hoc entity retrieval
    Darío Garigliotti
    Faegheh Hasibi
    Krisztian Balog
    [J]. Information Retrieval Journal, 2019, 22 : 285 - 323
  • [9] Identification and Optimisation of Type-Level Model Queries
    Ali, Qurat Ul Ain
    Kolovos, Dimitris
    Barmpis, Konstantinos
    [J]. 24TH ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL-DRIVEN ENGINEERING LANGUAGES AND SYSTEMS COMPANION (MODELS-C 2021), 2021, : 752 - 761
  • [10] Learning Sufficient Queries for Entity Filtering
    Efron, Miles
    Willis, Craig
    Sherman, Garrick
    [J]. SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 1091 - 1094