Entropy based features in FAWT framework for automated detection of epileptic seizure EEG signals

被引:0
|
作者
Tanveer, M. [1 ]
Pachori, R. B. [2 ]
Angami, N., V [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Math, Indore 453552, Madhya Pradesh, India
[2] Indian Inst Technol Indore, Discipline Elect Engn, Indore 453552, Madhya Pradesh, India
关键词
Electroencephalogram (EEG); Seizure and non-seizure; Flexible analytic wavelet transform (FAWT); Robust energy-based least squares twin support vector machines (RELS-TSVM); SUPPORT VECTOR MACHINES; ANALYTIC WAVELET TRANSFORM; CLASSIFICATION; DIAGNOSIS; PATTERN; EXTRACTION; ROBUST; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flexible analytic wavelet transform (FAWT) is suitable for the study of oscillatory signals like electroencephalogram (EEG) signals with versatile features such as shift in-variance, tunable oscillatory properties and flexible time-frequency domain. In this paper, we propose an automated method for the classification of seizure and non-seizure EEG signals using FAWT and entropy-based features such as Stein's unbiased risk estimator (SURE) entropy, log energy entropy, and Shannon entropy. The obtained features are given as input to robust energy-based least squares twin support vector machines (RELS-TSVM) for classification. The proposed method has been implemented on publicly available epilepsy database (Bonn University EEG database) and is comparable with the existing methods with a maximum accuracy of 100% for the classification of seizure and non-seizure EEG signals.
引用
收藏
页码:1946 / 1952
页数:7
相关论文
共 50 条
  • [1] Epileptic Seizure Detection Based on Bandwidth Features of EEG Signals
    Wulandari, Diah P.
    Putriz, Nomala G. P.
    Suprapto, Yoyon K.
    Purnami, Santi W.
    Juniani, Anda, I
    Islamiyah, Wardah R.
    [J]. FIFTH INFORMATION SYSTEMS INTERNATIONAL CONFERENCE, 2019, 161 : 568 - 576
  • [2] Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals
    Liu, Jian
    Du, Yipeng
    Wang, Xiang
    Yue, Wuguang
    Feng, Jim
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1995 - 2011
  • [3] A deep learning framework for epileptic seizure detection based on neonatal EEG signals
    Artur Gramacki
    Jarosław Gramacki
    [J]. Scientific Reports, 12
  • [4] A deep learning framework for epileptic seizure detection based on neonatal EEG signals
    Gramacki, Artur
    Gramacki, Jaroslaw
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] A Shallow Autoencoder Framework for Epileptic Seizure Detection in EEG Signals
    Khan, Gul Hameed
    Khan, Nadeem Ahmad
    Bin Altaf, Muhammad Awais
    Abbasi, Qammer
    [J]. SENSORS, 2023, 23 (08)
  • [6] Epileptic Seizure Detection Based on EEG Signals and CNN
    Zhou, Mengni
    Tian, Cheng
    Cao, Rui
    Wang, Bin
    Niu, Yan
    Hu, Ting
    Guo, Hao
    Xiang, Jie
    [J]. FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [7] The detection of epileptic seizure signals based on fuzzy entropy
    Xiang, Jie
    Li, Conggai
    Li, Haifang
    Cao, Rui
    Wang, Bin
    Han, Xiaohong
    Chen, Junjie
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 18 - 25
  • [8] Epileptic Seizure Detection using EEG Signals
    Khan, Irfan Mabood
    Khan, Mohd Maaz
    Farooq, Omar
    [J]. 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 111 - 117
  • [9] Evaluation of time domain features on detection of epileptic seizure from EEG signals
    Sharmila, A.
    Geethanjali, P.
    [J]. HEALTH AND TECHNOLOGY, 2020, 10 (03) : 711 - 722
  • [10] AUTOMATIC DETECTION OF EPILEPTIC SEIZURE BY EXTRACTING STATISTICALS FEATURES FROM EEG SIGNALS
    Issaka, Mahamat Ali
    Dabye, Ali S.
    Gueye, Lamine
    [J]. JP JOURNAL OF BIOSTATISTICS, 2015, 12 (01) : 15 - 31