A parameterized proximal point algorithm for separable convex optimization

被引:22
|
作者
Bai, Jianchao [1 ]
Zhang, Hongchao [2 ]
Li, Jicheng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Separable convex programming; Proximal point algorithm; Global convergence; Statistical learning; ALTERNATING DIRECTION METHOD; MINIMIZATION PROBLEMS; SPLITTING METHOD; DECOMPOSITION;
D O I
10.1007/s11590-017-1195-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a worst-case O(1/t) convergence rate, where t denotes the iteration number. By properly choosing the algorithm parameters, numerical experiments on solving a sparse optimization problem arising from statistical learning show that our P-PPA could perform significantly better than other state-of-the-art methods, such as the alternating direction method of multipliers and the relaxed proximal point algorithm.
引用
收藏
页码:1589 / 1608
页数:20
相关论文
共 50 条
  • [1] A parameterized proximal point algorithm for separable convex optimization
    Jianchao Bai
    Hongchao Zhang
    Jicheng Li
    [J]. Optimization Letters, 2018, 12 : 1589 - 1608
  • [2] Approximate Customized Proximal Point Algorithms for Separable Convex Optimization
    Chen, Hong-Mei
    Cai, Xing-Ju
    Xu, Ling-Ling
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (02) : 383 - 408
  • [3] Approximate Customized Proximal Point Algorithms for Separable Convex Optimization
    Hong-Mei Chen
    Xing-Ju Cai
    Ling-Ling Xu
    [J]. Journal of the Operations Research Society of China, 2023, 11 : 383 - 408
  • [4] Generalized proximal point algorithm for convex optimization
    Medhi, D
    Ha, CD
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 88 (02) : 475 - 488
  • [5] A Stochastic Proximal Point Algorithm: Convergence and Application to Convex Optimization
    Bianchi, Pascal
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015,
  • [6] Proximal Point Algorithm for Differentiable Quasi-Convex Multiobjective Optimization
    Amir, Fouzia
    Farajzadeh, Ali
    Petrot, Narin
    [J]. FILOMAT, 2020, 34 (07) : 2367 - 2376
  • [7] Convergence rate of a proximal multiplier algorithm for separable convex minimization
    Sarmiento, O.
    Papa Quiroz, E. A.
    Oliveira, P. R.
    [J]. OPTIMIZATION, 2017, 66 (02) : 251 - 270
  • [8] Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization
    Chen, Caihua
    Chan, Raymond H.
    Ma, Shiqian
    Yang, Junfeng
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2239 - 2267
  • [9] Inertial proximal point regularization algorithm for unconstrained vector convex optimization problems
    Nguyen Buong
    [J]. Ukrainian Mathematical Journal, 2008, 60 : 1483 - 1491
  • [10] Inertial proximal point regularization algorithm for unconstrained vector convex optimization problems
    Nguyen Buong
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2008, 60 (09) : 1483 - 1491