An efficient sparse pruning method for human pose estimation

被引:15
|
作者
Wang, Mingyang [1 ,2 ]
Sun, Tianyi [3 ]
Song, Kang [1 ,4 ]
Li, Shuang [2 ]
Jiang, Jing [4 ]
Sun, Linjun [2 ]
机构
[1] Qingdao Univ, Coll Elect & Informat Engn, Qingdao 266071, Peoples R China
[2] Zhejiang Wanxin Digital Technol Co Ltd, Hangzhou, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[4] Xian Univ Posts & Telecommun, Shaanxi Key Lab Informat Commun Network & Secur, Xian 710121, Peoples R China
基金
中国国家自然科学基金;
关键词
Human pose estimation; computer vision; sparse pruning method; scaling parameters; structured pruning method; ALIGNMENT; NETWORK;
D O I
10.1080/09540091.2021.2012423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human pose estimation (HPE) is crucial for computer vision (CV). Moreover, it's a vital step for computers to understand human actions and behaviours. However, the huge number of parameters and calculations in the HPE model have brought big challenges to deploy to resource-constrained mobile devices. Aiming to overcome the challenge, we propose a sparse pruning method (SPM) for the HPE model. First, L1 regularisation is added in the training phase of the original model, and network parameters of the convolution layers (CLs) and batch normalisation layers (BNLs) are sparsely trained to obtain a network structure with sparse weights. We then combine the sparse weights of filters with the scaling parameters of the BNLs to determine their importance. Finally, the structured pruning method is used to prune the sparse filters and corresponding channels. SPM can reduce the number of model parameters and calculations without affecting precision. Promising results indicate that SPM outperforms other advanced pruning methods.
引用
收藏
页码:960 / 974
页数:15
相关论文
共 50 条
  • [1] An Efficient Method for Boosting Human Pose Estimation
    Xiang, Shicheng
    Chen, Xiao
    Zhou, Jun
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2021,
  • [2] Efficient Pose: Efficient human pose estimation with neural architecture search
    Wenqiang Zhang
    Jiemin Fang
    Xinggang Wang
    Wenyu Liu
    [J]. Computational Visual Media, 2021, 7 (03) : 335 - 347
  • [3] Efficient Human Pose Estimation in Hierarchical Context
    Zhang, Feng
    Zhu, Xiatian
    Ye, Mao
    [J]. IEEE ACCESS, 2019, 7 : 29365 - 29373
  • [4] MEMe: A Mutually Enhanced Modeling Method for Efficient and Effective Human Pose Estimation
    Li, Jie
    Wang, Zhixing
    Qi, Bo
    Zhang, Jianlin
    Yang, Hu
    [J]. SENSORS, 2022, 22 (02)
  • [5] High-resolution Human Pose Estimation Method Based on Efficient Convolution
    Du, Hai-Xia
    Ma, Hong-Bin
    Fan, Zheng
    [J]. Journal of Network Intelligence, 2022, 7 (04): : 909 - 920
  • [6] Design Space Exploration on Efficient and Accurate Human Pose Estimation from Sparse IMU-Sensing
    Fuerst-Walter, Iris
    Nappi, Antonio
    Harbaum, Tanja
    Becker, Juergen
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10888 - 10893
  • [7] Sparse Gaussian Process With Input Noise for Human Pose Estimation
    Xia J.-X.
    Chen X.
    Lin J.-X.
    Li W.-P.
    Wu Q.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (04): : 693 - 705
  • [8] Human Pose Estimation Based on Evidence Supporting and Sub-graph Pruning
    Asumang, Emmanuel Kofi Nii
    Uo, Xin Z.
    Zheng, Shang
    Yu, Hualong
    [J]. 2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 20 - 27
  • [9] A Parameter Efficient Human Pose Estimation Method Based on Densely Connected Convolutional Module
    Wang, Ziren
    Liu, Guoliang
    Tian, Guohui
    [J]. IEEE ACCESS, 2018, 6 : 58056 - 58063
  • [10] Efficient High-Resolution Human Pose Estimation
    Qin, Xiaofei
    Qiu, Lingfeng
    He, Changxiang
    Zhang, Xuedian
    [J]. PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 383 - 396