A scalable, secure, and interoperable platform for deep data-driven health management

被引:22
|
作者
Bahmani, Amir [1 ,2 ,3 ]
Alavi, Arash [1 ,2 ,3 ]
Buergel, Thore [3 ]
Upadhyayula, Sushil [1 ,3 ,4 ]
Wang, Qiwen [1 ,3 ,4 ]
Ananthakrishnan, Srinath Krishna [3 ]
Alavi, Amir [3 ]
Celis, Diego [1 ,3 ,4 ]
Gillespie, Dan [3 ]
Young, Gregory [1 ,3 ]
Xing, Ziye [1 ,2 ]
Nguyen, Minh Hoang Huynh [1 ,2 ]
Haque, Audrey [1 ,2 ]
Mathur, Ankit [1 ,3 ,4 ]
Payne, Josh [1 ,3 ,4 ]
Mazaheri, Ghazal [1 ,3 ]
Li, Jason Kenichi [1 ,3 ,4 ]
Kotipalli, Pramod [1 ,3 ,4 ]
Liao, Lisa [1 ,3 ,4 ]
Bhasin, Rajat [3 ]
Cha, Kexin [1 ,3 ]
Rolnik, Benjamin [1 ,3 ]
Celli, Alessandra [1 ]
Dagan-Rosenfeld, Orit [1 ]
Higgs, Emily [1 ]
Zhou, Wenyu [1 ,2 ]
Berry, Camille Lauren [1 ,3 ]
Van Winkle, Katherine Grace [1 ,3 ]
Contrepois, Kevin [1 ]
Ray, Utsab [1 ,2 ,3 ]
Bettinger, Keith [1 ,2 ]
Datta, Somalee [5 ]
Li, Xiao [1 ,6 ]
Snyder, Michael P. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford Ctr Genom & Personalized Med, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Healthcare Innovat Lab, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[5] Stanford Med, Technol & Digital Solut, Stanford, CA USA
[6] Case Western Reserve Univ, Dept Biochem, Ctr RNA Sci & Therapeut, Dept Comp & Data Sci, Cleveland, OH 44106 USA
关键词
OMICS; CARE;
D O I
10.1038/s41467-021-26040-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing scale and scope of biomedical data is generating tremendous opportunities for improving health outcomes, but also raises new challenges ranging from data acquisition and storage to data analysis and utilization. To meet these challenges, the authors develop the Personal Health Dashboard, which provides an end-to-end solution for deep biomedical data analytics. The large amount of biomedical data derived from wearable sensors, electronic health records, and molecular profiling (e.g., genomics data) is rapidly transforming our healthcare systems. The increasing scale and scope of biomedical data not only is generating enormous opportunities for improving health outcomes but also raises new challenges ranging from data acquisition and storage to data analysis and utilization. To meet these challenges, we developed the Personal Health Dashboard (PHD), which utilizes state-of-the-art security and scalability technologies to provide an end-to-end solution for big biomedical data analytics. The PHD platform is an open-source software framework that can be easily configured and deployed to any big data health project to store, organize, and process complex biomedical data sets, support real-time data analysis at both the individual level and the cohort level, and ensure participant privacy at every step. In addition to presenting the system, we illustrate the use of the PHD framework for large-scale applications in emerging multi-omics disease studies, such as collecting and visualization of diverse data types (wearable, clinical, omics) at a personal level, investigation of insulin resistance, and an infrastructure for the detection of presymptomatic COVID-19.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A scalable, secure, and interoperable platform for deep data-driven health management
    Amir Bahmani
    Arash Alavi
    Thore Buergel
    Sushil Upadhyayula
    Qiwen Wang
    Srinath Krishna Ananthakrishnan
    Amir Alavi
    Diego Celis
    Dan Gillespie
    Gregory Young
    Ziye Xing
    Minh Hoang Huynh Nguyen
    Audrey Haque
    Ankit Mathur
    Josh Payne
    Ghazal Mazaheri
    Jason Kenichi Li
    Pramod Kotipalli
    Lisa Liao
    Rajat Bhasin
    Kexin Cha
    Benjamin Rolnik
    Alessandra Celli
    Orit Dagan-Rosenfeld
    Emily Higgs
    Wenyu Zhou
    Camille Lauren Berry
    Katherine Grace Van Winkle
    Kévin Contrepois
    Utsab Ray
    Keith Bettinger
    Somalee Datta
    Xiao Li
    Michael P. Snyder
    [J]. Nature Communications, 12
  • [2] Data-Driven Scalable Mechanisms and Architectures for Secure IoT Connectivity
    Mandapati, Sai Gautam
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS, PERCOM WORKSHOPS, 2024, : 253 - 254
  • [3] Blue Brain Nexus: An open, secure, scalable system for knowledge graph management and data-driven science
    Sy, Mohameth Francois
    Roman, Bogdan
    Kerrien, Samuel
    Mendez, Didac Montero
    Genet, Henry
    Wajerowicz, Wojciech
    Dupont, Michael
    Lavriushev, Ian
    Machon, Julien
    Pirman, Kenneth
    Mana, Dhanesh Neela
    Stafeeva, Natalia
    Kaufmann, Anna-Kristin
    Lu, Huanxiang
    Lurie, Jonathan
    Fonta, Pierre-Alexandre
    Martinez, Alejandra Garcia Rojas
    Ulbrich, Alexander D.
    Lindqvist, Carolina
    Jimenez, Silvia
    Rotenberg, David
    Markram, Henry
    Hill, Sean L.
    [J]. SEMANTIC WEB, 2023, 14 (04) : 697 - 727
  • [4] Promoting federated and Trusted Sharing and Trading of Interoperable Data Assets and Data-Driven Intelligence - The PISTIS Platform
    Stefanidis, Kyriakos
    Kousouris, Sotiris
    Glikman, Yury
    Alexakos, Christos
    [J]. ERCIM NEWS, 2023, (133): : 38 - 39
  • [5] PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH
    Kamdar, Maulik R.
    Wu, Michelle J.
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016, 2016, : 333 - 344
  • [6] Towards Scalable and Fast Distributionally Robust Optimization for Data-Driven Deep Learning
    Shen, Xuli
    Wang, Xiaomei
    Xu, Qing
    Ge, Weifeng
    Xue, Xiangyang
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 448 - 457
  • [7] MODRON: A Scalable and Interoperable Web of Things Platform for Structural Health Monitoring
    Aguzzi, Cristiano
    Gigli, Lorenzo
    Sciullo, Luca
    Trotta, Angelo
    Zonzini, Federica
    De Marchi, Luca
    Di Felice, Marco
    Marzani, Alessandro
    Cinotti, Tullio Salmon
    [J]. 2021 IEEE 18TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2021,
  • [8] Crosstown Foundry: A Scalable Data-driven Journalism Platform for Hyper-local News
    Nocera, Luciano
    Constantinou, George
    Tran, Luan, V
    Kim, Seon Ho
    Kahn, Gabriel
    Shahabi, Cyrus
    [J]. SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2765 - 2769
  • [9] Data-Driven Management Strategies in Public Health Collaboratives
    Varda, Danielle M.
    [J]. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE, 2011, 17 (02): : 122 - 132
  • [10] Data-driven protocol-handling for interoperable networking environment
    Aoki, K
    Kudo, S
    Nishikawa, H
    [J]. PDPTA'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, 2001, : 243 - 249