Pelvic Applications of Diffusion Magnetic Resonance Images

被引:16
|
作者
Coutinho, Antonio C., Jr. [1 ]
Krishnaraj, Arun [2 ]
Pires, Cintia E. [1 ]
Bittencourt, Leonardo K. [1 ,3 ,4 ]
Guimaraes, Alexander R. [2 ,5 ]
机构
[1] CDPI, BR-22640902 Rio De Janeiro, Brazil
[2] Harvard Univ, Massachusetts Gen Hosp, Div Abdominal Imaging & Intervent Radiol, Dept Radiol,Med Sch, Boston, MA 02114 USA
[3] Univ Fed Rio de Janeiro, Dept Radiol, Rio De Janeiro, Brazil
[4] Carlos Bittencourt Diagnost Imagem, Rio De Janeiro, Brazil
[5] Harvard Univ, Massachusetts Gen Hosp, MIT, Martinos Ctr Biomed Imaging,Dept Radiol,Med Sch, Cambridge, MA 02139 USA
关键词
MR imaging; Pelvic; Diffusion; Neoplasms; Uterus; Ovaries; Prostate; Rectum; HIGH-B-VALUE; UTERINE ENDOMETRIAL CANCER; TOTAL MESORECTAL EXCISION; URINARY-BLADDER CANCER; ADVANCED RECTAL-CANCER; MR-IMAGING FINDINGS; PROSTATE-CANCER; WEIGHTED MRI; OVARIAN-CANCER; PREOPERATIVE RADIOTHERAPY;
D O I
10.1016/j.mric.2010.10.003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted imaging (DWI) is a powerful imaging technique in neuroimaging; its value in abdominal and pelvic imaging has only recently been appreciated as a result of improvements in magnetic resonance imaging technology. There is growing interest in the use of DWI for evaluating pathology in the pelvis. Its ability to noninvasively characterize tissues and to depict changes at a cellular level allows DWI to be an effective complement to conventional sequences of pelvic imaging, especially in oncologic patients. The addition of DWI may obviate contrast material in those with renal insufficiency or contrast material allergy.
引用
收藏
页码:133 / +
页数:26
相关论文
共 50 条
  • [1] Diffusion-Weighted Magnetic Resonance Imaging in Pelvic Cancer
    deSouza, N. M.
    Kyriazi, S.
    Sala, E.
    CURRENT MEDICAL IMAGING REVIEWS, 2012, 8 (02) : 92 - 99
  • [2] A method for registering diffusion weighted magnetic resonance images
    Tao, Xiaodong
    Miller, James V.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 594 - 602
  • [3] Spatial transformations of diffusion tensor magnetic resonance images
    Alexander, DC
    Pierpaoli, C
    Basser, PJ
    Gee, JC
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (11) : 1131 - 1139
  • [4] Diffusion Models for Contrast Harmonization of Magnetic Resonance Images
    Durrerl, Alicia
    Wollebl, Julia
    Biederl, Florentin
    Sinnecker, Tim
    Weigell, Matthias
    Sandkuhlerl, Robin
    Granziera, Cristina
    Yaldizli, Ozgur
    Cattinl, Philippe C.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 526 - 551
  • [5] Bilateral filtering of diffusion tensor magnetic resonance images
    Hamarnesh, Ghassan
    Hradsky, Judith
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) : 2463 - 2475
  • [6] Diffusion magnetic resonance imaging: Its principle and applications
    Mori, S
    Barker, PB
    ANATOMICAL RECORD, 1999, 257 (03): : 102 - 109
  • [7] Clinical Applications for Diffusion Magnetic Resonance Imaging in Radiotherapy
    Tsien, Christina
    Cao, Yue
    Chenevert, Thomas
    SEMINARS IN RADIATION ONCOLOGY, 2014, 24 (03) : 218 - 226
  • [8] Interobserver and sequence variability in the delineation of pelvic organs at risk on magnetic resonance images
    Zheng, Wanjia
    Yang, Xin
    Cheng, Zesen
    Lian, Jinxing
    Li, Enting
    Mo, Shaoling
    Liu, Yimei
    Huang, Sijuan
    RADIOLOGY AND ONCOLOGY, 2025, 59 (01) : 139 - 146
  • [9] Diagnostic Value of Diffusion-Weighted Magnetic Resonance Imaging in Pelvic Abscesses
    Truong Luong Francis Nguyen
    Soyer, Philippe
    Barbe, Coralie
    Graesslin, Olivier
    Veron, Sophie
    Amzallag-Bellenger, Elisa
    Tomas, Catherine
    Hoeffel, Christine
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2013, 37 (06) : 971 - 979
  • [10] Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images
    Bouza, Jose J.
    Yang, Chun-Hao
    Vemuri, Baba C.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 13939 LNCS : 563 - 575