Variance model selection with application to joint analysis of multiple microarray datasets under false discovery rate control

被引:0
|
作者
Qu, Long [1 ,2 ]
Nettleton, Dan [1 ]
Dekkers, Jack C. M. [2 ]
Bacciu, Nicola [3 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Anim Sci, Ames, IA 50011 USA
[3] INRA, GARen, F-35000 Rennes, France
关键词
AIC; AICc; Cross-validation; False discovery rates; Microarray; Model selection; Multiresponse permutation procedure; Variance model; GENE-EXPRESSION; INFORMATION; REGRESSION; ORDER;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the problem of selecting homogeneous variance models vs. heterogeneous variance models in the context of joint analysis of multiple microarray datasets. We provide a modified multiresponse permutation procedure (MRPP), modified cross-validation procedures, and the right AICc (corrected Akaike's information criterion) for choosing a variance model. In a simple univariate setting, our modified MRPP outperforms commonly used competitors. For microarray data analysis, we suggest using the sum of gene-specific selection criteria to choose one best gene-specific model for use with all genes. Through realistic simulations based on three real microarray studies, we evaluated the proposed methods and found that using the correct model does not necessarily provide the best separation between differentially and equivalently expressed genes, but it does control false discovery rates (FDR) at desired levels. A hybrid procedure to decouple FDR control and differential expression detection is recommended.
引用
收藏
页码:477 / 491
页数:15
相关论文
共 50 条
  • [1] Linear Mixed Model Selection for False Discovery Rate Control in Microarray Data Analysis
    Demirkale, Cumhur Yusuf
    Nettleton, Dan
    Maiti, Tapabrata
    BIOMETRICS, 2010, 66 (02) : 621 - 629
  • [2] The control of the false discovery rate in multiple testing under dependency
    Benjamini, Y
    Yekutieli, D
    ANNALS OF STATISTICS, 2001, 29 (04): : 1165 - 1188
  • [3] A mixture model for estimating the local false discovery rate in DNA microarray analysis
    Liao, JG
    Lin, Y
    Selvanayagam, ZE
    Shih, WCJ
    BIOINFORMATICS, 2004, 20 (16) : 2694 - 2701
  • [4] The application conditions of false discovery rate control
    Zhang, Hongbin
    Le, Xin
    Xiang, Tingxiu
    GENES & DISEASES, 2023, 10 (04) : 1145 - 1146
  • [5] Sequential selection procedures and false discovery rate control
    G'Sell, Max Grazier
    Wager, Stefan
    Chouldechova, Alexandra
    Tibshirani, Robert
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (02) : 423 - 444
  • [6] False discovery rate control in cancer biomarker selection
    Li, Zhaoming
    GENES & DISEASES, 2023, 10 (04) : 1141 - 1142
  • [7] Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
    Liu, Peng
    Hwang, J. T. Gene
    BIOINFORMATICS, 2007, 23 (06) : 739 - 746
  • [8] Multiple Attribute Control Charts with False Discovery Rate Control
    Li, Yanting
    Tsung, Fugee
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2012, 28 (08) : 857 - 871
  • [9] On control of the false discovery rate under no assumption of dependency
    Guo, Wenge
    Rao, M. Bhaskara
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3176 - 3188
  • [10] False discovery rate control under Archimedean copula
    Bodnar, Taras
    Dickhaus, Thorsten
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2207 - 2241