Monitoring Joint Convergence of MCMC Samplers

被引:6
|
作者
VanDerwerken, Douglas [1 ]
Schmidler, Scott C. [2 ]
机构
[1] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC USA
关键词
Convergence diagnostics; HPD intervals; Total variation distance; GRAPHICAL MODELS; DIAGNOSTICS; ALGORITHM;
D O I
10.1080/10618600.2017.1297240
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a diagnostic for monitoring convergence of a Markov chain Monte Carlo (MCMC) sampler to its target distribution. In contrast to popular existing methods, we monitor convergence to the joint target distribution directly rather than a select scalar projection. The method uses a simple nonparametric posterior approximation based on a state-space partition obtained by clustering the pooled draws frommultiple chains, and convergence is determined when the estimated posterior probabilities of partition elements under each chain are sufficiently similar. This framework applies to a wide variety of problems, and generalizes directly to non-Euclidean state spaces. Our method also provides approximate high-posterior-density regions, and a characterization of differences between nonconverged chains, all with little additional computational burden. We demonstrate this approach on applications to sampling posterior distributions over Rp, graphs, and partitions. Supplementary materials for this article are available online.
引用
收藏
页码:558 / 568
页数:11
相关论文
共 50 条
  • [1] Convergence rates of two-component MCMC samplers
    Qin, Qian
    Jones, Galin L.
    BERNOULLI, 2022, 28 (02) : 859 - 885
  • [2] Riemann sums for MCMC estimation and convergence monitoring
    Philippe, A
    Robert, CP
    STATISTICS AND COMPUTING, 2001, 11 (02) : 103 - 115
  • [3] Riemann sums for MCMC estimation and convergence monitoring
    Anne Philippe
    Christian P. Robert
    Statistics and Computing, 2001, 11 : 103 - 115
  • [4] MCMC-driven importance samplers
    Llorente, F.
    Curbelo, E.
    Martino, L.
    Elvira, V.
    Delgado, D.
    APPLIED MATHEMATICAL MODELLING, 2022, 111 : 1 - 22
  • [5] Adaptive MCMC via Combining Local Samplers
    Shaloudegi, Kiarash
    Gyorgy, Andras
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [6] ADAPTIVE GIBBS SAMPLERS AND RELATED MCMC METHODS
    Latuszynski, Krzysztof
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (01): : 66 - 98
  • [7] Decorrelating ReSTIR Samplers via MCMC Mutations
    Sawhney, Rohan
    Lin, Daqi
    Kettunen, Markus
    Bitterli, Benedikt
    Ramamoorthi, Ravi
    Wyman, Chris
    Pharr, Matt
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (01):
  • [8] MCMC samplers for multilocus analyses on complex pedigrees.
    Heath, SC
    Thompson, EA
    AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (04) : A278 - A278
  • [9] MCMC convergence diagnostics: A reviewww
    Mengersen, KL
    Robert, CP
    Guihenneuc-Jouyaux, C
    BAYESIAN STATISTICS 6, 1999, : 415 - 440
  • [10] Improving the Convergence of Reversible Samplers
    Luc Rey-Bellet
    Konstantinos Spiliopoulos
    Journal of Statistical Physics, 2016, 164 : 472 - 494