Linear-time recognition of circular-arc graphs

被引:11
|
作者
McConnell, RM [1 ]
机构
[1] Univ Colorado, Dept Comp Sci & Engn, Denver, CO 80217 USA
关键词
D O I
10.1109/SFCS.2001.959913
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph G is a circular-arc graph if it is the intersection graph of a set of arcs on a circle. That is, there is one arc for each vertex of G, and two vertices are adjacent in G if the corresponding arcs intersect. We give a linear time bound for recognizing this class of graphs. When G is a member of the class, the algorithm gives a certificate in the form of a set of arcs that realize it.
引用
收藏
页码:386 / 394
页数:9
相关论文
共 50 条
  • [1] Linear-Time Recognition of Circular-Arc Graphs
    Ross M. McConnell
    [J]. Algorithmica , 2003, 37 : 93 - 147
  • [2] Linear-time recognition of circular-arc graphs
    McConnell, RM
    [J]. ALGORITHMICA, 2003, 37 (02) : 93 - 147
  • [3] A simpler linear-time recognition of circular-arc graphs
    Kaplan, Haim
    Nussbaum, Yahav
    [J]. ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 41 - 52
  • [4] A Simpler Linear-Time Recognition of Circular-Arc Graphs
    Haim Kaplan
    Yahav Nussbaum
    [J]. Algorithmica, 2011, 61 : 694 - 737
  • [5] A Simpler Linear-Time Recognition of Circular-Arc Graphs
    Kaplan, Haim
    Nussbaum, Yahav
    [J]. ALGORITHMICA, 2011, 61 (03) : 694 - 737
  • [6] Linear-Time Recognition of Helly Circular-Arc Models and Graphs
    Joeris, Benson L.
    Lin, Min Chih
    McConnell, Ross M.
    Spinrad, Jeremy P.
    Szwarcfiter, Jayme L.
    [J]. ALGORITHMICA, 2011, 59 (02) : 215 - 239
  • [7] Linear-Time Recognition of Helly Circular-Arc Models and Graphs
    Benson L. Joeris
    Min Chih Lin
    Ross M. McConnell
    Jeremy P. Spinrad
    Jayme L. Szwarcfiter
    [J]. Algorithmica, 2011, 59 : 215 - 239
  • [8] A linear-time algorithm for paired-domination on circular-arc graphs
    Lin, Ching-Chi
    Tu, Hai-Lun
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 591 : 99 - 105
  • [9] Characterizations and linear time recognition of Helly circular-arc graphs
    Lin, Min Chih
    Szwarcfiter, Jayme L.
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 73 - 82
  • [10] Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs
    Deng, XT
    Hell, P
    Huang, J
    [J]. SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 390 - 403