Autonomous Wheel Loader Trajectory Tracking Control Using LPV-MPC

被引:0
|
作者
Song, Ruitao [1 ]
Ye, Zhixian [1 ]
Wang, Liyang [1 ]
He, Tianyi [2 ]
Zhang, Liangjun [1 ]
机构
[1] Baidu USA, Robot & Autonomous Driving Lab, Sunnyvale, CA 94089 USA
[2] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84342 USA
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a systematic approach for high-performance and efficient trajectory tracking control of autonomous wheel loaders. With the nonlinear dynamic model of a wheel loader, nonlinear model predictive control (MPC) is used in offline trajectory planning to obtain a high-performance state-control trajectory while satisfying the state and control constraints. In tracking control, the non-linear model is embedded into a Linear Parameter Varying (LPV) model and the LPV-MPC strategy is used to achieve fast online computation and good tracking performance. To demonstrate the effectiveness and the advantages of the LPVMPC, we test and compare three model predictive control strategies in the high-fidelity simulation environment. With the planned trajectory, three tracking control strategies LPV-MPC, nonlinear MPC, and LTI-MPC are simulated and compared in the perspectives of computational burden and tracking performance. The LPV-MPC can achieve better performance than conventional LTI-MPC because more accurate nominal system dynamics are captured in the LPV model. In addition, LPV-MPC achieves slightly worse tracking performance but tremendously improved computational efficiency than nonlinear MPC.
引用
收藏
页码:2063 / 2069
页数:7
相关论文
共 50 条
  • [1] LPV-MPC Control for Autonomous Vehicles
    Alcala, Eugenio
    Puig, Vicenc
    Quevedo, Joseba
    [J]. IFAC PAPERSONLINE, 2019, 52 (28): : 106 - 113
  • [2] LPV-MPC Path Planner for Autonomous Underwater Vehicles
    Cavanini, Luca
    Majecki, Pawel
    Grimble, Mike J.
    Uchihori, Hiroshi
    Tasaki, Mitsuhiko
    Yamamoto, Ikuo
    [J]. IFAC PAPERSONLINE, 2021, 54 (16): : 301 - 306
  • [3] Autonomous racing using Linear Parameter Varying-Model Predictive Control (LPV-MPC)
    Alcala, Eugenio
    Puig, Vicenc
    Quevedo, Joseba
    Rosolia, Ugo
    [J]. CONTROL ENGINEERING PRACTICE, 2020, 95
  • [4] Autonomous Underwater Vehicle Positioning Control - a Velocity Form LPV-MPC Approach
    Jimoh, Isah A.
    Yue, Hong
    Kucukdemiral, Ibrahim B.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 4388 - 4393
  • [5] Planning the trajectory of an autonomous wheel loader and tracking its trajectory via adaptive model predictive control
    Shi, Junren
    Sun, Dongye
    Qin, Datong
    Hu, Minghui
    Kan, Yingzhe
    Ma, Ke
    Chen, Ruibo
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 131
  • [6] Robust tube-based LPV-MPC for autonomous lane keeping
    Nezami, Maryam
    Abbas, Hossam Seddik
    Ngoc Thinh Nguyen
    Schildbach, Georg
    [J]. IFAC PAPERSONLINE, 2022, 55 (35): : 103 - 108
  • [7] LPV-MPC Path Planning for Autonomous Vehicles in Road Junction Scenarios
    Cavanini, Luca
    Majecki, Pawel
    Grimble, Mike J.
    Ivanovic, Vladimir
    Tseng, H. Eric
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 386 - 393
  • [8] Fast zonotope-tube-based LPV-MPC for autonomous vehicles
    Alcala, Eugenio
    Puig, Vicenc
    Quevedo, Joseba
    Sename, Olivier
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (20): : 3676 - 3685
  • [9] Coordinated PSO-PID based longitudinal control with LPV-MPC based lateral control for autonomous vehicles
    Kebbati, Yassine
    Ait-Oufroukh, Naima
    Vigneron, Vincent
    Ichalal, Dalil
    [J]. 2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 518 - 523
  • [10] Constraints-Aware Trajectory Tracking Control of Spacecraft Attitude using LPV and MPC
    Turnwald, Alen
    Baldauf, Niklas
    [J]. 2023 27TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR, 2023, : 139 - 144