Efficient 3D object classification by using direct Krawtchouk moment invariants

被引:16
|
作者
Benouini, Rachid [1 ]
Batioua, Imad [1 ]
Zenkouar, Khalid [1 ]
Najah, Said [1 ]
Qjidaa, Hassan [2 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Fac Sci & Technol, Lab Intelligent Syst & Applicat LSIA, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar el Mehraz, LESSI, Fes, Morocco
关键词
Moment invariants; Krawtchouk moments; Direct method; Indirect method; 3D object classification; Numerical stability; PSEUDO-ZERNIKE MOMENTS; IMAGE-ANALYSIS; SCALE INVARIANTS; PATTERN-RECOGNITION; FAST COMPUTATION; TRANSLATION; ROTATION; BLUR;
D O I
10.1007/s11042-018-5937-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an efficient set of moment invariants, named Direct Krawtchouk Moment Invariants (DKMI), for 3D objects recognition. This new set of invariants can be directly derived from the Krawtchouk moments, based on algebraic properties of Krawtchouk polynomials. The proposed computation approach is effectively compared with the classical method, which rely on the indirect computation of moment invariants by using the corresponding geometric moment invariants. Several experiments are carried out so as to evaluate the performance of the newly introduced invariants. Invariability property and noise robustness are firstly investigated. Secondly, the numerical stability is discussed. Then, the performance of the proposed moment invariants as pattern features for 3D object classification is compared with the existing Geometric, Krawtchouk, Tchebichef and Hahn Moment Invariants. Finally, a comparative analysis of computational time of these moment invariants is illustrated. The obtained results demonstrate the efficiency and the superiority of the proposed method.
引用
收藏
页码:27517 / 27542
页数:26
相关论文
共 50 条
  • [1] Efficient 3D object classification by using direct Krawtchouk moment invariants
    Rachid Benouini
    Imad Batioua
    Khalid Zenkouar
    Said Najah
    Hassan Qjidaa
    [J]. Multimedia Tools and Applications, 2018, 77 : 27517 - 27542
  • [2] An Efficient Camera Identification Technique using Krawtchouk Moment Invariants
    Borole, Megha
    Kolhe, S. R.
    [J]. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (01): : 53 - 68
  • [3] Brain morphometry using 3D moment invariants
    Mangin, JF
    Poupon, F
    Duchesnay, E
    Rivière, D
    Cachia, A
    Collins, DL
    Evans, AC
    Régis, J
    [J]. MEDICAL IMAGE ANALYSIS, 2004, 8 (03) : 187 - 196
  • [4] Fast and Accurate Computation of 3D Charlier Moment Invariants for 3D Image Classification
    Yamni, M.
    Daoui, A.
    El Ogri, O.
    Karmouni, H.
    Sayyouri, M.
    Qjidaa, H.
    Maaroufi, M.
    Alami, B.
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (12) : 6193 - 6223
  • [5] Fast and Accurate Computation of 3D Charlier Moment Invariants for 3D Image Classification
    M. Yamni
    A. Daoui
    O. El ogri
    H. Karmouni
    M. Sayyouri
    H. Qjidaa
    M. Maaroufi
    B. Alami
    [J]. Circuits, Systems, and Signal Processing, 2021, 40 : 6193 - 6223
  • [6] Translation Scaling and Rotation invariants of 3D Krawtchouk moments
    Amakdouf, Hicham
    Zouhri, Amal
    El Mallahi, Mostafa
    Tahiri, Ahmed
    Qjidaa, Hassan
    [J]. 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [7] Using photometric invariants for 3D object recognition
    Nagao, K
    Grimson, WEL
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1998, 71 (01) : 74 - 93
  • [8] A Comparative Study of Object Classification Methods Using 3D Zernike Moment on 3D Point Clouds
    Ozbay, Erdal
    Cinar, Ahmet
    [J]. TRAITEMENT DU SIGNAL, 2019, 36 (06) : 549 - 555
  • [9] 3D real object recognition on the basis of moment invariants and neural networks
    Mercimek, M
    Gulez, K
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2004, PROCEEDINGS, 2004, 3280 : 410 - 419
  • [10] 3D multi-object deformable templates based on moment invariants
    Poupon, F
    Mangin, JF
    Frouin, V
    Magnin, I
    [J]. SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 149 - 155