An evaluation of fuzzy classifications from IRS 1C LISS III imagery: a case study

被引:29
|
作者
Shalan, MA
Arora, MK
Ghosh, SK
机构
[1] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
[2] Indian Inst Technol, Dept Civil Engn, Roorkee 247667, Uttar Pradesh, India
关键词
D O I
10.1080/0143116031000094791
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Remote sensing data are frequently used to produce crisp and fuzzy classifications for land cover applications. Fuzzy approaches are attractive for classification of images dominated by mixed pixels. Recently, fully-fuzzy classification that can incorporate mixed pixels in all the three stages of a supervised classification has been recommended. In this Letter, the results of a case study on fully-fuzzy classification of Indian Remote Sensing (IRS) 1C Linear Imaging Self Scanning Sensor (LISS) III imagery are reported. The results illustrate that fully-fuzzy classification produces more accurate land-cover mapping than the conventional crisp classification. For instance, the areal extents of three dominant classes (i.e. agriculture, forest and grass) obtained from fully-fuzzy classification differ by only 13% from the actual areal extents, compared to 34% difference in area observed from crisp classification.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 50 条
  • [1] Image classification and performance evaluation of IRS 1C LISS-III data
    Muralikrishna, IV
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1772 - 1774
  • [2] Extraction and Delineation of Water Bodies from IRS-1C LISS III Imagery
    Parveen, Rubina
    Kulkarni, Subhash
    Mytri, V. D.
    [J]. 2016 IEEE ANNUAL INDIA CONFERENCE (INDICON), 2016,
  • [3] Automated extraction and discrimination of open land areas from IRS-1C LISS III imagery
    Parveen, Rubina
    Kulkarni, Subhash
    Mytri, V.D.
    [J]. International Journal of Computers and Applications, 2020, 42 (07) : 676 - 685
  • [4] Burnt area mapping of Bandipur National Park, India using IRS 1C/1D LISS III data
    R. K. Somashekar
    P. Ravikumar
    C. N. Mohan Kumar
    K. L. Prakash
    B. C. Nagaraja
    [J]. Journal of the Indian Society of Remote Sensing, 2009, 37 : 37 - 50
  • [5] Burnt Area Mapping of Bandipur National Park, India using IRS 1C/1D LISS III Data
    Somashekar, R. K.
    Ravikumar, P.
    Kumar, C. N. Mohan
    Prakash, K. L.
    Nagaraja, B. C.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2009, 37 (01) : 37 - 50
  • [6] Studies on biodiversity using semivariogram approach from IRS-1C LISS-III data
    Krishna Prasad V.
    Rajagopal T.
    Kant Y.
    Srinivas S.
    Badarinath K.V.S.
    [J]. Journal of the Indian Society of Remote Sensing, 1998, 26 (3) : 103 - 112
  • [7] Segment based classification using IRS-1C, LISS-III data
    Pathak, V
    Dikchit, O
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3513 - 3515
  • [8] Vegetation Extraction Based On Spectral Deviations Using An IRS-1C LISS III Image
    Parveen, Rubina
    Kulkarni, Subhash
    Mytri, V. D.
    [J]. PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 158 - 162
  • [9] Comparison of spectral characteristics between EO-1 ALI and IRS-P6 LISS-III imagery
    Zhang, Xuehong
    Tian, Qingjiu
    [J]. CURRENT SCIENCE, 2015, 108 (05): : 954 - 960
  • [10] Low Level Vision Processing and Vegetation Extraction using IRS-1C LISS III Image
    Parveen, Rubina
    Kulkarni, Subhash
    Mytri, V. D.
    [J]. 2016 INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (ICONSIP), 2016,