Distortion-Invariant Target Recognition Based on Multi channel Joint Transform Correlator

被引:0
|
作者
Lin Chao [1 ]
Han Yanli [1 ]
Lou Shuli [2 ]
Liu Pei [1 ]
Zhang Wenlong [3 ]
Yang Zikang [3 ]
机构
[1] Naval Aviat Univ, Sch Aviat Operat & Support, Yantai 264000, Shandong, Peoples R China
[2] Yantai Univ, Sch Optoelect Informat Sci & Technol, Yantai 264000, Shandong, Peoples R China
[3] Unit 92485 PLA, Dalian 116041, Liaoning, Peoples R China
来源
关键词
information processing; optical pattern recognition; multiple channeled joint transform correlator; synthetic discriminant function; distortion-invariant pattern recognition; IMPLEMENTATION; SCALE; IMAGE; PHASE;
D O I
10.3788/CJL202249.1309001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
ObjectiveWiththeadventofthebigdataandintelligenceerasinformationsystemsrequireconsiderablyenhancedperformanceandlowenergycostsOpticalcomputingmaybecomethenext-generationcomputingplatformowingtoitsparallelprocessingcapabilityandhighbandwidthwithlowenergyconsumptionInpatternrecognitionapplicationslargeamountsofimagedatamustberapidlyprocessedTwotypesofopticalapproacheshavebeeninvestigatedforpatternrecognitionopticalneuralnetworkwhichcomprisestwosubclassesincludingsiliconphotonic-basedneuralnetworksandfree-space-basedopticalnetworkTheformerhasundergoneconsiderableadvancementsrecentlyowingtoimprovedfabricationcapabilityandnovelnetworkcomponentsbasedonopticssuchasmicroringresonatorsandMach-ZehnderinterferometersThelatteregdiffractiveneuralnetworksisalsoimportantparticularlyforcomputationalimaging-basedapplicationsHoweveropticalneuralnetwork-basedpatternrecognitionapproachesareimmatureowingtotheimplementationofnonlinearfunctionsPatternrecognitionapproachesfoundedonfree-space-basedopticalnetworksarehybridoptoelectroniccorrelatorsfarmorematurethanopticalneuralnetwork-basedonesThecorrelatorcanbecodesignedwithaneuralnetworktoserveasacoprocessertoprefiltersomeimagefeaturesforultrafastprocessingHoweverinconventionalopticalcorrelatorsboththespatialandspectralbandwidthsofsystemshavenotbeenefficientlyusedwhenperformingthecorrelationoperationHencetheinherentparallelprocessingcapabilityofopticscannotbefullyexploited. MethodsInourpreviousworkamultichanneljointtransformcorrelationmethodisproposedbasedonthecompressionandtranslationofjointtransformpowerspectrumtofullyutilizespatialandspectralbandwidthsandenhancetheparallelprocessingefficiencyandrecognitionaccuracyofopticalcorrelationsystemsIntheinputplaneofthisschemethescene imageandNnumbersofreferenceimagesareuploadedondifferentzonesoftheinputspatiallightmodulatorthenthephasemapsoptimizedusingtheiterativealgorithmaresuperimposedontotheimagesIntheFourierplaneinterferencebetweentheFourierspectraofsceneimagesandthoseofeverysinglereferenceimageoccursindifferentzonesoftheFourierplaneWhentherestrictionparameterinthephaseoptimizationalgorithmisappropriatedadjustednointerferenceoftheFourierspectraofthereferenceimagesisobservedConsequentlytheparallelprocessingofNchannelsisachievedwithoutcrosstalkTherelationbetweenthelocalizedpeakcluttermeanoftheFourierspectraofthepreferredphaseandthestandarddeviationofthecorrelationpeakpositionisanalyzedandusedasacriterionforpreferentialpreferredphasemaskselectionFurthermorethestandarddeviationofthecorrelationpeakpositionisobtainedforrecognitiontasksInthisstudywefocusondistortion-invariantpatternrecognitionbyintegratingthemultichanneljointtransformcorrelatorandthesyntheticdiscriminantfunctionFirstthefeasibilityofthelocalpeaktocluttermeanasaconstraintforpreferentialphaseselectionisanalyzedresultsindicatedthatthisfactorisnotappropriatewhenthesyntheticdiscriminantfunctionisusedHenceanewphaseselectioncriterion-knownasthevariationinthecorrelationpeakposition-isproposedtoobtainthepublicpreferredphasefortargetswithaspecificdistortionrangeFurthermoretheselectedphaseisusedinthemultichanneljointtransformcorrelatorwiththesyntheticdiscriminantfunctiontoachievedistortion-invariantpatternrecognitionThentodeterminethesystemperformanceintermsofthedistortionlevelthetoleranceofoursystemonthescaling-downofthesizeoftargetandtheincreaseinthenumberoftrainingimagesforthesyntheticdiscriminantfunctionareanalyzedFinallyconsideringthatthebackgroundmayvaryinrealapplicationswetakesuccessivevideoframesasvariedinputbackgroundsandanalyzethefeasibilityofourproposal. ResultsandDiscussionsResultsindicatethatundertheconsideredimagefilesizeandbackgroundcomplexitytheproposedmethodcanachievenine-channelparallelrecognitionFig8Forcorrectrecognitiontheminimumscalingdownfactoris06Fig11Whenthenumberofrotatedtrainingimagesisincreasedto9inthesyntheticdiscriminantfunctionacorrectrecognitioncanbeguaranteedFig13TherelationbetweentheminimumthresholdofphasetheoptimizationconstraintandthesynthesizedimagenumbersofSDFisobtainedforcalculatingthepreferredphasesTable1FurthermoreacorrectrecognitioncanbeguaranteedwhenthevaluesofhalfthepixelsinthebackgroundhavechangedFig16 ConclusionsHereinanoveldistortion-invariantpatternrecognitionmethodbasedonmultichanneljointtransformcorrelatorisproposedThelocalpeaktocluttermeanisshowntobeunsuitableandweproposeanewoptimizationcriterionknownasthevariationinthecorrelationpeakpositionwhichisfeasibleinthisproposalWeachievenine-channelpatternrecognitionwithin06--10timesofthescalingoftheimagesizeandrotationrangesof0 degrees--30 degrees 70 degrees--100 degrees 140 degrees--170 degrees 210 degrees--240 degrees and280 degrees--310 degrees TheupperlimitofthenumberofsynthesizedtrainingimagesisanalyzedwhichisnineinthisstudyMoreovertheproposedmethodcanmaintainitsperformancewhenthebackgroundisvariedwithinthevaluesofhalfitspixelindicatingrobustnesstobackgroundchangesTherecognitionspeedandaccuracyondistortionofthesystemareconsiderablyimprovedwithourproposalwhichwillbenefitthedevelopmentofpracticalmultichannelopticalcorrelators
引用
收藏
页数:16
相关论文
共 29 条
  • [1] Distortion-invariant fringe-adjusted joint transform correlation
    Alam, MS
    Chen, XW
    Karim, MA
    [J]. APPLIED OPTICS, 1997, 36 (29): : 7422 - 7427
  • [2] FRINGE-ADJUSTED JOINT TRANSFORM CORRELATION
    ALAM, MS
    KARIM, MA
    [J]. APPLIED OPTICS, 1993, 32 (23) : 4344 - 4350
  • [3] UNIFIED SYNTHETIC DISCRIMINANT FUNCTION COMPUTATIONAL FORMULATION
    CASASENT, D
    [J]. APPLIED OPTICS, 1984, 23 (10): : 1620 - 1627
  • [4] Advances and Challenges of Optical Neural Networks
    Chen Hongwei
    Yu Zhenming
    Zhang Tian
    Zang Yubin
    Dan Yihang
    Xu Kun
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (05):
  • [5] Implementation of a nonzero-order joint transform correlator using interferometric technique
    Cheng, CJ
    Tu, HY
    [J]. OPTICAL REVIEW, 2002, 9 (05) : 193 - 196
  • [6] MULTIOBJECT RECOGNITION IN A MULTICHANNEL JOINT-TRANSFORM CORRELATOR
    FENG, JH
    CHIN, GF
    WU, MX
    YAN, SH
    YAN, YB
    [J]. OPTICS LETTERS, 1995, 20 (01) : 82 - 84
  • [7] Deep learning in photonics: introduction
    Gao, Li
    Chai, Yang
    Zibar, Darko
    Yu, Zongfu
    [J]. PHOTONICS RESEARCH, 2021, 9 (08) : DLP1 - DLP3
  • [8] GERCHBERG RW, 1972, OPTIK, V35, P237
  • [9] OPTICAL-PATTERN RECOGNITION USING CIRCULAR HARMONIC EXPANSION
    HSU, YN
    ARSENAULT, HH
    [J]. APPLIED OPTICS, 1982, 21 (22): : 4016 - 4019
  • [10] JOINT TRANSFORM IMAGE CORRELATION USING A BINARY SPATIAL LIGHT-MODULATOR AT THE FOURIER PLANE
    JAVIDI, B
    KUO, CJ
    [J]. APPLIED OPTICS, 1988, 27 (04) : 663 - 665