An empirical Bayes inference for the von Mises distribution

被引:7
|
作者
Rodrigues, J [1 ]
Leite, JG [1 ]
Milan, LA [1 ]
机构
[1] DEsUFSCar, BR-13565905 Sao Carlos, SP, Brazil
关键词
angular data; link function; maximum entropy; Metropolis-within-Gibbs algorithm; regression models;
D O I
10.1111/1467-842X.00140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops an empirical Bayesian analysis for the von Mises distribution, which is the most useful distribution for statistical inference of angular data. A two-stage informative prior is proposed, in which the hyperparameter is obtained from the data in one of the stages. This empirical or approximate Bayes inference is justified on the basis of maximum entropy, and it eliminates the modified Bessel functions. An example with real data and a realistic prior distribution for the regression coefficients is considered via a Metropolis-within-Gibbs algorithm.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 50 条
  • [1] Finite-sample investigation of likelihood and Bayes inference for the symmetric von Mises-Fisher distribution
    Bingham, Melissa A.
    Nordman, Daniel J.
    Vardeman, Stephen B.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (05) : 1317 - 1327
  • [2] The Multivariate Generalised von Mises Distribution: Inference and Applications
    Navarro, Alexandre K. W.
    Frellsen, Jes
    Turner, Richard E.
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2394 - 2400
  • [3] Bayesian Inference on the Bimodality of the Generalized von Mises Distribution
    Gatto, Riccardo
    Salvador, Sara
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (02)
  • [4] Bayesian Inference on the Bimodality of the Generalized von Mises Distribution
    Riccardo Gatto
    Sara Salvador
    [J]. Journal of Statistical Theory and Practice, 2022, 16
  • [5] BAYESIAN-INFERENCE FOR VON MISES-FISHER DISTRIBUTION
    MARDIA, KV
    ELATOUM, SAM
    [J]. BIOMETRIKA, 1976, 63 (01) : 203 - 206
  • [6] Monotone Empirical Bayes Inference for Parameter of Exponential Distribution
    Huang, Juan
    Li, Naiyi
    Liu, Huaxiang
    Zhang, Jian
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 2, 2009, : 9 - +
  • [7] Empirical Bayes inference of pairwise FsT and its distribution in the genome
    Kitada, Shuichi
    Kitakado, Toshihide
    Kishino, Hirohisa
    [J]. GENETICS, 2007, 177 (02) : 861 - 873
  • [8] Empirical Bayes inference for generalized exponential distribution based on records
    Jaheen, ZF
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (08) : 1851 - 1861
  • [9] Bayes and Empirical Bayes Inference in Changepoint Problems
    Lian, Heng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (03) : 419 - 430
  • [10] Empirical Bayes and Selective Inference
    Rasines, Daniel Garcia
    Young, G. Alastair
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2022, 102 (04) : 1205 - 1217