Morphological descriptors for automatic detection of epileptiform events

被引:3
|
作者
Boos, Christine Fredel [1 ]
Vitarelli Pereira, Maria do Carmo [2 ]
Marques Argoud, Fernanda Isabel [3 ]
de Azevedo, Fernando Mendes [1 ]
机构
[1] Univ Fed Santa Catarina, DEEL, Inst Engn Biomed, Campus Univ Trindade, BR-88040900 Florianopolis, SC, Brazil
[2] FAMEVACO, Ipatinga, Brazil
[3] IFSC, Florianopolis, SC, Brazil
关键词
ARTIFICIAL NEURAL-NETWORK; EEG; QUANTIFICATION; RECOGNITION; SEIZURES;
D O I
10.1109/IEMBS.2010.5626339
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The purpose of this study was to analyze morphological characteristics of electroencephalogram (EEG) signals in order to define a representation of epileptiform events that can distinguish them from other events occurring in the signal. There are several studies on parameterization of EEG signals, particularly for automatic detection of paroxysms related to epilepsy. Considering that during the automatic detection process the morphological characteristics pertaining to these events may get mixed up if only conventional descriptors are used, it was necessary to create a new set of parameters that reveal more differences between them. The parameters are fed to artificial neural networks and the individual and collective contribution of each parameter was evaluated by statistical process. The proposed method achieved a success rate of 80-90%, sensitivity and specificity between 85% and 96%.
引用
收藏
页码:2435 / 2438
页数:4
相关论文
共 50 条
  • [1] Analysis and Definition of Morphological Descriptors for Automatic Detection of Epileptiform Events in EEG Signals with Artificial Neural Networks
    Boos, Christine Fredel
    de Azevedo, Fernando Mendes
    Vitarelli Pereira, Maria do Carmo
    Marques Argoud, Fernanda Isabel
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 5, 2010, : 349 - 353
  • [2] Automatic Pattern Recognition of Epileptiform Discharges Using Morphological Descriptors and Linear Discriminant Analysis
    Boos, Christine Fredel
    de Azevedo, Fernando Mendes
    2013 IEEE XXXIII INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2013, : 293 - 296
  • [3] Automatic Microseismic Events Detection Using Multiscale Morphological Characteristic Function
    Jiang, Yongyong
    Wang, Runqiu
    Chen, Xiaoqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3341 - 3351
  • [4] Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks
    Acir, N
    Öztura, I
    Kuntalp, M
    Baklan, B
    Güzelis, C
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (01) : 30 - 40
  • [5] Automatic microseismic events detection using morphological multiscale top-hat transformation
    Shang, Guo-Jun
    Huang, Wei-Lin
    Yuan, Li-Kun
    Shen, Jin-Song
    Gao, Fei
    Zhao, Li -Song
    PETROLEUM SCIENCE, 2022, 19 (05) : 2027 - 2045
  • [6] Automatic microseismic events detection using morphological multiscale top-hat transformation
    Guo-Jun Shang
    Wei-Lin Huang
    Li-Kun Yuan
    Jin-Song Shen
    Fei Gao
    Li-Song Zhao
    Petroleum Science, 2022, 19 (05) : 2027 - 2045
  • [7] Invariant morphological descriptors from otolith shape in environment automatic classification
    Hevia-Montiel, Nidiyare
    Perez-Gonzalez, Jorge
    Gallardo-Torres, Alfredo
    Badillo-Aleman, Maribel
    Chiappa-Carrara, Xavier
    JOURNAL OF APPLIED ICHTHYOLOGY, 2021, 37 (04) : 534 - 544
  • [8] Automatic detection of epileptiform spikes in the electrocorticogram: a comparison of two algorithms
    Dumpelmann, M
    Elger, CE
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 1998, 7 (02): : 145 - 152
  • [9] A multistage, multimethod approach for automatic detection and classification of epileptiform EEG
    Liu, HS
    Zhang, T
    Yang, FS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (12) : 1557 - 1566
  • [10] Automatic morphological detection of otolith nucleus
    Cao, F
    Fablet, R
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 606 - 609