On zero-sum subsequences of restricted size. IV

被引:12
|
作者
Chi, R [1 ]
Ding, S
Gao, W
Geroldinger, A
Schmid, WA
机构
[1] Dalian Univ Technol, Inst Math, Dalian 116024, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
基金
中国国家自然科学基金;
关键词
zero-sum sequence; finite abelian groups;
D O I
10.1007/s10474-005-0201-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite abelian group G, we investigate the invariant s(G) (resp. the invariant s(0)(G)) which is defined as the smallest integer l is an element of N such that every sequence S in G of length vertical bar S vertical bar >= l has a subsequence T with sum zero and length vertical bar T vertical bar = exp (G) (resp. length vertical bar T vertical bar equivalent to 0 mod exp (G)).
引用
收藏
页码:337 / 344
页数:8
相关论文
共 50 条
  • [1] On zero-sum subsequences of restricted size. IV
    Rui Chi
    Shuyan Ding
    Weidong Gao
    Alfred Geroldinger
    Wolfgang A. Schmid
    Acta Mathematica Hungarica, 2005, 107 : 337 - 344
  • [2] On zero-sum subsequences of restricted size
    Gao, WD
    JOURNAL OF NUMBER THEORY, 1996, 61 (01) : 97 - 102
  • [3] On zero-sum subsequences of restricted size II
    Gao, WD
    DISCRETE MATHEMATICS, 2003, 271 (1-3) : 51 - 59
  • [4] On the zero-sum subsequences of modular restricted lengths
    Hong, Siao
    Zhao, Kevin
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [5] On zero sum subsequences of restricted size
    Moriya, B. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (04): : 395 - 402
  • [6] On zero sum subsequences of restricted size
    B. K. Moriya
    Proceedings - Mathematical Sciences, 2010, 120 : 395 - 402
  • [7] On short zero-sum subsequences of zero-sum sequences
    Fan, Yushuang
    Gao, Weidong
    Wang, Guoqing
    Zhong, Qinghai
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [8] On zero sum subsequences of restricted size III
    Gao, WD
    ARS COMBINATORIA, 2001, 61 : 65 - 72
  • [9] On short zero-sum subsequences
    Gao, WD
    Zhou, J
    ARS COMBINATORIA, 2005, 74 : 231 - 238
  • [10] On the number of zero-sum subsequences
    Cao, Hui-Qin
    Sun, Zhi-Wei
    DISCRETE MATHEMATICS, 2007, 307 (13) : 1687 - 1691