A new splitting algorithm for equilibrium problems and applications

被引:2
|
作者
Trinh Ngoc Hai [1 ]
Ngo Thi Thuong [2 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1st Dai Co Viet St, Hanoi, Vietnam
[2] VNU Univ Sci, HUS, Dept Math Mech Informat, 334 Nguyen Trai St, Hanoi, Vietnam
来源
关键词
Equilibrium problem; splitting algorithm; strong pseudomonotonicity; extragradient algorithm;
D O I
10.24193/subbmath.2022.1.09
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss a new splitting algorithm for solving equilibrium problems arising from Nash-Cournot oligopolistic equilibrium problems in electricity markets with non-convex cost functions. Under the strong pseudomonotonicity of the original bifunction and suitable conditions of the component bifunctions, we prove the strong convergence of the proposed algorithm. Our results improve and develop previously discussed extragradient-like splitting algorithms and general extragradient algorithms. We also present some numerical experiments and compare our algorithm with the existing ones.
引用
收藏
页码:129 / 144
页数:16
相关论文
共 50 条
  • [1] New Splitting Algorithm for Mixed Equilibrium Problems on Hilbert Spaces
    Deepan, Urairat
    Kumam, Poom
    Kim, Jong Kyu
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 1199 - 1211
  • [2] A viscosity splitting algorithm for solving inclusion and equilibrium problems
    Buthinah A Bin Dehaish
    Abdul Latif
    Huda O Bakodah
    Xiaolong Qin
    Journal of Inequalities and Applications, 2015
  • [3] A viscosity splitting algorithm for solving inclusion and equilibrium problems
    Bin Dehaish, Buthinah A.
    Latif, Abdul
    Bakodah, Huda O.
    Qin, Xiaolong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [4] Two new splitting algorithms for equilibrium problems
    Trinh Ngoc Hai
    Nguyen The Vinh
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 1051 - 1069
  • [5] Two new splitting algorithms for equilibrium problems
    Trinh Ngoc Hai
    Nguyen The Vinh
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (04) : 1051 - 1069
  • [6] On the convergence of splitting algorithm for mixed equilibrium problems on Hadamard manifolds
    K. Khammahawong
    P. Kumam
    P. Chaipunya
    Journal of Mathematical Chemistry, 2020, 58 : 799 - 815
  • [7] On the convergence of splitting algorithm for mixed equilibrium problems on Hadamard manifolds
    Khammahawong, K.
    Kumam, P.
    Chaipunya, P.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) : 799 - 815
  • [8] A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings
    Duc, Phung M.
    Muu, Le D.
    OPTIMIZATION, 2016, 65 (10) : 1855 - 1866
  • [9] A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications
    Le Quang Thuy
    Trinh Ngoc Hai
    Journal of Optimization Theory and Applications, 2017, 175 : 411 - 431
  • [10] A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications
    Le Quang Thuy
    Trinh Ngoc Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (02) : 411 - 431