Personalized Social Search Based on Agglomerative Hierarchical Graph Clustering

被引:0
|
作者
Ishizuka, Kenkichi [1 ]
机构
[1] Dwango Co Ltd, Chuo Ku, Kabukiza Tower,4-12-15 Ginza, Tokyo 1040061, Japan
关键词
Social search; Graph clustering; Louvain method;
D O I
10.1007/978-3-030-03520-4_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a personalized social search algorithm for retrieving multimedia contents of a consumer generated media (CGM) site having a social network service (SNS). The proposed algorithm generates cluster information on users in the social network by using an agglomerative hierarchical graph clustering, and stores it to a contents database (DB). Retrieved contents are sorted by scores calculated according to similarities of cluster information between a searcher and authors of contents. This paper also describes the evaluation experiments to confirm effectiveness of the proposed algorithm by implementing the proposed algorithm in a video retrieval system of a CGM site.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 50 条
  • [1] Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth
    Dhulipala, Laxman
    Eisenstat, David
    Lacki, Jakub
    Mirrokni, Vahab
    Shi, Jessica
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time
    Dhulipala, Laxman
    Eisenstat, David
    Lacki, Jakub
    Mirrokni, Vahab
    Shi, Jessica
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [3] Multiviewpoint-Based Agglomerative Hierarchical Clustering
    Fujiwara, Yuji
    Koga, Hisashi
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, 2019, 11707 : 325 - 340
  • [4] Scalable Hierarchical Agglomerative Clustering
    Monath, Nicholas
    Dubey, Kumar Avinava
    Guruganesh, Guru
    Zaheer, Manzil
    Ahmed, Amr
    McCallum, Andrew
    Mergen, Gokhan
    Najork, Marc
    Terzihan, Mert
    Tjanaka, Bryon
    Wang, Yuan
    Wu, Yuchen
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1245 - 1255
  • [5] HIERARCHICAL AGGLOMERATIVE CLUSTERING PROCEDURE
    LUKASOVA, A
    [J]. PATTERN RECOGNITION, 1979, 11 (5-6) : 365 - 381
  • [6] Efficient agglomerative hierarchical clustering
    Bouguettaya, Athman
    Yu, Qi
    Liu, Xumin
    Zhou, Xiangmin
    Song, Andy
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2785 - 2797
  • [7] A personalized search engine based on Web-snippet hierarchical clustering
    Ferragina, P.
    Gulli, A.
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2008, 38 (02): : 189 - 225
  • [8] Model Order Reduction Based on Agglomerative Hierarchical Clustering
    Al-Dabooni, Seaar
    Wunsch, Donald
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (06) : 1881 - 1895
  • [9] A Boltzmann Theory Based Dynamic Agglomerative Hierarchical Clustering
    Li, Gang
    Zhuang, Jian
    Hou, Hongning
    Yu, Dehong
    [J]. IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, 2009, : 96 - 101
  • [10] Agglomerative hierarchical clustering for data with tolerance
    Yasunori, Endo
    Yukihiro, Hamasuna
    Sadaaki, Miyamoto
    [J]. GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 404 - 409