Semimetal transition in curved MoS2/MoSe2 Van der Waals heterojunction by dispersion-corrected density functional theory

被引:5
|
作者
Lopez-Galan, Oscar A. [1 ,2 ,3 ]
Ramos, Manuel [2 ]
机构
[1] Karlsruher Inst Technol KIT, Inst Appl Mat Mat Sci & Engn IAM WK, Engelbert Arnold Str 4, D-76131 Karlsruhe, Germany
[2] Univ Autonoma Ciudad Juarez, Inst Ingn & Tecnol, Dept Fis & Matemat, Ave Charro 450 N, Ciudad Juarez 32310, Chihuahua, Mexico
[3] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Heterostructure; Semiconducting; Mo; S; Se; Modeling; SINGLE-LAYER; ELECTRONIC-PROPERTIES; MONOLAYER;
D O I
10.1557/s43579-022-00233-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theoretical study for MoS2/MoSe2 Van der Waals heterojunction in the armchair direction, and periodicity in the y-direction, under the mechanical deformation process to explore electronic structure vs. curvature angle. Our findings reveal that the heterojunction maintains chemical stability, even under high deformation, and the bandgap of the heterojunction is inversely proportional to curvature angle; the shift from semiconductor-with a bandgap of 0.8 eV-to semimetal occurs at deformation angles as low as 5 degrees, having a gapless material. The mentioned transition corresponds mainly to distortion of half-filled molybdenum d-orbitals and chalcogen-chalcogen p-orbitals overlapping near the Fermi level.
引用
下载
收藏
页码:1154 / 1159
页数:6
相关论文
共 50 条
  • [1] Semimetal transition in curved MoS2/MoSe2 Van der Waals heterojunction by dispersion-corrected density functional theory
    Oscar A. López-Galán
    Manuel Ramos
    MRS Communications, 2022, 12 : 1154 - 1159
  • [2] Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure
    Baranowski, M.
    Surrente, A.
    Klopotowski, L.
    Urban, J. M.
    Zhang, N.
    Maude, D. K.
    Wiwatowski, K.
    Mackowski, S.
    Kung, Y. C.
    Dumcenco, D.
    Kis, A.
    Plochocka, P.
    NANO LETTERS, 2017, 17 (10) : 6360 - 6365
  • [3] Thermal conductivity of van der Waals hetero-bilayer of MoS2/MoSe2
    Mouri, Shinichiro
    Matsuda, Kazunari
    Nanishi, Yasushi
    Araki, Tsutomu
    APPLIED PHYSICS EXPRESS, 2020, 13 (07)
  • [4] Interlayer friction and superlubricity in bilayer graphene and MoS2/MoSe2 van der Waals heterostructures
    Ru, Guoliang
    Qi, Weihong
    Tang, Kewei
    Wei, Yaru
    Xue, Taowen
    TRIBOLOGY INTERNATIONAL, 2020, 151
  • [5] Temperature-dependent Raman modes of MoS2/MoSe2 van der Waals heterostructures
    Oper, Merve
    Shehu, Yahaya
    Perkgoz, Nihan Kosku
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (11)
  • [6] Excellent thermoelectric performance induced by interface effect in MoS2/MoSe2 van der Waals heterostructure
    Jia, Pin-Zhen
    Zeng, Yu-Jia
    Wu, Dan
    Pan, Hui
    Cao, Xuan-Hao
    Zhou, Wu-Xing
    Xie, Zhong-Xiang
    Zhang, Ji-Xu
    Chen, Ke-Qiu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (05)
  • [7] Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction
    Long, Run
    Prezhdo, Oleg V.
    NANO LETTERS, 2016, 16 (03) : 1996 - 2003
  • [8] 2D 1T′-MoS2-WS2van der Waals heterostructure for hydrogen evolution reaction: dispersion-corrected density functional theory calculations
    Obligacion, Joseph Kyle A.
    Putungan, Darwin Barayang
    MATERIALS RESEARCH EXPRESS, 2020, 7 (07)
  • [9] High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures
    Fang Li
    Boyi Xu
    Wen Yang
    Zhaoyang Qi
    Chao Ma
    Yajuan Wang
    Xuehong Zhang
    Zhuoran Luo
    Delang Liang
    Dong Li
    Ziwei Li
    Anlian Pan
    Nano Research, 2020, 13 : 1053 - 1059
  • [10] Defect Healing and Charge Transfer-Mediated Valley Polarization in MoS2/MoSe2/MoS2 Trilayer van der Waals Heterostructures
    Surrente, Alessandro
    Dumcenco, Dumitru
    Yang, Zhuo
    Kuc, Agnieszka
    Jing, Yu
    Heine, Thomas
    Kung, Yen-Cheng
    Maude, Duncan K.
    Kis, Andras
    Plochocka, Paulina
    NANO LETTERS, 2017, 17 (07) : 4130 - 4136