DETECTION OF LAND SUBSIDENCE IN BEIJING, CHINA, USING INTERFEROMETRIC POINT TARGET ANALYSIS TECHNIQUE

被引:4
|
作者
Zhao, Hongli [1 ,2 ]
Fan, Jinghui [3 ]
Guo, Xiaofang [3 ]
Chen, Jianping [1 ,2 ]
Xia, Ye [4 ]
Ge, Daqing [3 ]
Zhang, Lu [5 ]
Qiu, Yubao [5 ]
Zhong, Chang [1 ,2 ]
机构
[1] China Univ Geosci Beijing, Sch Geosci & Resources, Beijing 100083, Peoples R China
[2] Beijing Land Resources Informat Dev Res Lab, Beijing 100083, Peoples R China
[3] China Aero Geophys Survey & Remote Sensing Ctr La, Beijing 100083, Peoples R China
[4] GFZ, Telegrafenberg A17, D-14473 Potsdam, Germany
[5] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100190, Peoples R China
关键词
Land subsidence; IPTA; DInSAR; multi-baseline; PERMANENT SCATTERERS; SAR INTERFEROMETRY;
D O I
10.1109/IGARSS.2010.5652841
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Land subsidence in Beijing is supposed to be caused by over-exploitation of ground water, which is leading to a rapid decline of water levels, drying out clay layers that finally result in land subsidence. The Interferometric Point Target Analysis (IPTA) is an advanced method to monitor vertical motion of the land surface over time. IPTA identifies backscattering objects, named as coherent points or points targets, at the ground surface that persistently reflect radar radiation emitted by the SAR antenna. The core component of the IPTA technique is the iterative estimation of phase differences for all measurement points over the sets of the SAR data using a linear model. In this paper, IPTA technique was used to retrieve the phase history, extract the linear deformation information from interferometry phase and weaken atmosphere phase delay in Beijing. 20 ENVISAT ASAR images acquired between June-18-2003 and March-14-2007 have been selected. The intention of this article is to demonstrate how IPTA technique could be used to extract valuable information in Beijing area.
引用
收藏
页码:1553 / 1556
页数:4
相关论文
共 50 条
  • [1] Monitoring of urban subsidence with SAR interferometric point target analysis: A case study in Suzhou, China
    Zhang, Yonghong
    Zhang, Jixian
    Wu, Hongan
    Lu, Zhong
    Sun Guangtong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (05) : 812 - 818
  • [2] Monitoring and Analysis of Land Subsidence in Cangzhou Based on Small Baseline Subsets Interferometric Point Target Analysis Technology
    Xu, Xinyue
    Zhou, Chaofan
    Gong, Huili
    Chen, Beibei
    Wang, Lin
    LAND, 2023, 12 (12)
  • [3] Analysis of the Spatiotemporal Variation in Land Subsidence on the Beijing Plain, China
    Guo, Lin
    Gong, Huili
    Zhu, Feng
    Zhu, Lin
    Zhang, Zhenxin
    Zhou, Chaofan
    Gao, Mingliang
    Sun, Yike
    REMOTE SENSING, 2019, 11 (10)
  • [4] Characterization and causes of land subsidence in Beijing, China
    Chen, Beibei
    Gong, Huili
    Li, Xiaojuan
    Lei, Kunchao
    Zhu, Lin
    Gao, Mingliang
    Zhou, Chaofan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (03) : 808 - 826
  • [5] Comprehensive Analysis and Artificial Intelligent Simulation of Land Subsidence of Beijing, China
    Zhu Lin
    Gong Huili
    Li Xiaojuan
    Li Yongyong
    Su Xiaosi
    Guo Gaoxuan
    CHINESE GEOGRAPHICAL SCIENCE, 2013, 23 (02) : 237 - 248
  • [6] Comprehensive Analysis and Artificial Intelligent Simulation of Land Subsidence of Beijing, China
    ZHU Lin
    GONG Huili
    LI Xiaojuan
    LI Yongyong
    SU Xiaosi
    GUO Gaoxuan
    Chinese Geographical Science, 2013, (02) : 237 - 248
  • [7] Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing, China
    Lin Zhu
    Huili Gong
    Xiaojuan Li
    Yongyong Li
    Xiaosi Su
    Gaoxuan Guo
    Chinese Geographical Science, 2013, 23 : 237 - 248
  • [8] Comprehensive Analysis and Artificial Intelligent Simulation of Land Subsidence of Beijing, China
    ZHU Lin
    GONG Huili
    LI Xiaojuan
    LI Yongyong
    SU Xiaosi
    GUO Gaoxuan
    Chinese Geographical Science, 2013, 23 (02) : 237 - 248
  • [9] Long-Term Land Subsidence Monitoring of Beijing (China) Using the Small Baseline Subset (SBAS) Technique
    Hu, Bo
    Wang, Han-Sheng
    Sun, Yong-Ling
    Hou, Jian-Guo
    Liang, Jun
    REMOTE SENSING, 2014, 6 (05): : 3648 - 3661
  • [10] Spatial risk assessment on land subsidence in Beijing, China
    Zhu, L.
    Chen, Y.
    Gong, H. L.
    Liu, C.
    Wang, R.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 3267 - 3273