Self-Correction of Soil Moisture Ocean Salinity (SMOS) Soil Moisture Dry Bias

被引:4
|
作者
Lee, Ju Hyoung [1 ]
Cosh, Michael [2 ]
Starks, Patrick [3 ]
Toth, Zoltan [4 ]
机构
[1] Korea Univ, Res Inst Mega Construct, Seoul, South Korea
[2] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA
[3] USDA ARS, Grazing Lands Res Lab, El Reno, OK USA
[4] NOAA, ESRL Global Syst Div, Boulder, CO USA
基金
新加坡国家研究基金会;
关键词
RIVER EXPERIMENTAL WATERSHEDS; MICROWAVE EMISSION; BRIGHTNESS TEMPERATURE; PERFORMANCE METRICS; LAND-SURFACE; RETRIEVAL; VALIDATION; ASSIMILATION; SENSITIVITY; ALGORITHM;
D O I
10.1080/07038992.2019.1700466
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Satellites produce global monitoring data, while field measurements are made at a local station over the land. Due to difference in scale, it has been a challenge how to define and correct the satellite retrieval biases. Although the relative approach of cumulative distribution functions (CDF) matching compares a long-term climatology of reference data with that of satellite data, it does not mitigate the retrieval biases generated from Instantaneous Field of View (IFOV) measurements over short timescales. As an alternative, we suggest stochastic retrievals (using probabilistic distribution function) to reduce the dry bias in soil moisture retrievals from the satellite SMOS (Soil Moisture and Ocean Salinity) that occurs at the time scale of several days. Rank Probability Skill Score (RPSS) is also proposed as non-local Root Mean Square Errors (RMSEs) of a probabilistic version to optimize stochastic retrievals. With this approach, the time-averaged RMSEs of retrieved SMOS soil moisture is reduced from 0.072 to 0.035 m(3)/m(3). Dry bias also decreases from -0.055 to -0.020 m(3)/m(3). As the proposed approach does not rely on local field measurements, it has a potential as a global operational scheme.
引用
收藏
页码:814 / 828
页数:15
相关论文
共 50 条
  • [1] A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles
    Lee, Ju Hyoung
    Im, Jungho
    [J]. REMOTE SENSING, 2015, 7 (12): : 16045 - 16061
  • [2] Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission
    Kerr, YH
    Waldteufel, P
    Wigneron, JP
    Martinuzzi, JM
    Font, J
    Berger, M
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08): : 1729 - 1735
  • [3] The objectives and rationale of the Soil Moisture and Ocean Salinity (SMOS) mission
    Kerr, YH
    Waldteufel, P
    Wigneron, JP
    Font, J
    Berger, M
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1004 - 1006
  • [4] Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.
    Jackson, Thomas J.
    Bindlish, Rajat
    Cosh, Michael H.
    Zhao, Tianjie
    Starks, Patrick J.
    Bosch, David D.
    Seyfried, Mark
    Moran, Mary Susan
    Goodrich, David C.
    Kerr, Yann H.
    Leroux, Delphine
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1530 - 1543
  • [5] The soil moisture and ocean salinity (SMOS) mission: First results and achievements
    Kerr, Yann
    Waldteufel, Philippe
    Wigneron, Jean Pierre
    Boutin, Jacqueline
    Reul, Nicolas
    Bitar, Ahmad Al
    Leroux, Delphine
    Mialon, Arnaud
    Richaume, Philippe
    Mecklenburg, Susanne
    [J]. Revue Francaise de Photogrammetrie et de Teledetection, 2012, (200): : 12 - 19
  • [6] Foreword to the special issue on the Soil Moisture and Ocean Salinity (SMOS) mission
    Kerr, Yann H.
    Le Vine, David M.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03): : 583 - 585
  • [7] Open issues for the Soil Moisture and ocean salinity (SMOS) satellite mission salinity retrieval
    Font, J
    Lagerloef, GSE
    Le Vine, D
    Camps, A
    [J]. PROCEEDINGS OF THE FIRST RESULTS WORKSHOP ON EUROSTARRS, WISE, LOSAC CAMPAIGNS, 2003, 525 : 7 - 13
  • [8] SOLAR RADIO OBSERVATIONS FROM SOIL MOISTURE AND OCEAN SALINITY (SMOS) MISSION
    Crapolicchio, Raffaele
    Casella, Daniele
    Marque, Christophe
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4111 - 4114
  • [9] Stochastic relaxation of nonlinear soil moisture ocean salinity (SMOS) soil moisture retrieval errors with maximal Lyapunov exponent optimization
    Ju Hyoung Lee
    Choon Ki Ahn
    [J]. Nonlinear Dynamics, 2019, 95 : 653 - 667
  • [10] Stochastic relaxation of nonlinear soil moisture ocean salinity (SMOS) soil moisture retrieval errors with maximal Lyapunov exponent optimization
    Lee, Ju Hyoung
    Ahn, Choon Ki
    [J]. NONLINEAR DYNAMICS, 2019, 95 (01) : 653 - 667