Automated Determination of Arterial Input Function for DCE-MRI of the Prostate

被引:1
|
作者
Zhu, Yingxuan [1 ]
Chang, Ming-Ching [2 ]
Gupta, Sandeep N. [2 ]
机构
[1] Syracuse Univ, Dept EECS, Syracuse, NY 13244 USA
[2] GE Global Re Ctr, Niskayuna, NY 12309 USA
关键词
CONTRAST-ENHANCED MRI;
D O I
10.1117/12.878213
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Prostate cancer is one of the commonest cancers in the world. Dynamic contrast enhanced MRI (DCE-MRI) provides an opportunity for non-invasive diagnosis, staging, and treatment monitoring. Quantitative analysis of DCE-MRI relies on determination of an accurate arterial input function (AIF). Although several methods for automated AIF detection have been proposed in literature, none are optimized for use in prostate DCE-MRI, which is particularly challenging due to large spatial signal inhomogeneity. In this paper, we propose a fully automated method for determining the AIF from prostate DCE-MRI. Our method is based on modeling pixel uptake curves as gamma variate functions (GVF). First, we analytically compute bounds on GVF parameters for more robust fitting. Next, we approximate a GVF for each pixel based on local time domain information, and eliminate the pixels with false estimated AIFs using the deduced upper and lower bounds. This makes the algorithm robust to signal inhomogeneity. After that, according to spatial information such as similarity and distance between pixels, we formulate the global AIF selection as an energy minimization problem and solve it using a message passing algorithm to further rule out the weak pixels and optimize the detected AIF. Our method is fully automated without training or a priori setting of parameters. Experimental results on clinical data have shown that our method obtained promising detection accuracy (all detected pixels inside major arteries), and a very good match with expert traced manual AIF.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Comparing Arterial Input Function Measurements in DCE-MRI Using MOLLI and Phase
    Majtenyi, N.
    Gabrani-Juma, H.
    Klein, R.
    dekemp, R. A.
    Cron, G.
    Nguyen, T. B.
    Cameron, I.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3644 - 3644
  • [2] Blind deconvolution estimation of an arterial input function for small animal DCE-MRI
    Jirik, Radovan
    Taxt, Torfinn
    Macicek, Ondrej
    Bartos, Michal
    Kratochvila, Jiri
    Soucek, Karel
    Drazanova, Eva
    Kratka, Lucie
    Hampl, Ales
    Starcuk, Zenon, Jr.
    [J]. MAGNETIC RESONANCE IMAGING, 2019, 62 : 46 - 56
  • [3] Arterial input function: Relevance of eleven analytical models in DCE-MRI studies
    Balvay, D.
    Ponvianne, Yannick
    Claudon, Michel
    Cuenod, C. A.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 600 - +
  • [4] Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling
    Li, Xin
    Cai, Yu
    Moloney, Brendan
    Chen, Yiyi
    Huang, Wei
    Woods, Mark
    Coakley, Fergus V.
    Rooney, William D.
    Garzotto, Mark G.
    Springer, Charles S., Jr.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2016, 269 : 104 - 112
  • [5] Automated determination of arterial input function in DCE-MR images of the kidney
    Klepaczko, Artur
    Muszelska, Martyna
    Eikefjord, Eli
    Rorvik, Jarle
    Lundervold, Arvid
    [J]. 2018 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2018, : 280 - 285
  • [6] Improved Bolus Arrival Time and Arterial Input Function Estimation for Tracer Kinetic Analysis in DCE-MRI
    Singh, Anup
    Rathore, Ram K. Singh
    Haris, Mohammad
    Verma, Sanjay K.
    Husain, Nuzhat
    Gupta, Rakesh K.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 29 (01) : 166 - 176
  • [7] Comprehensive Population-Averaged Arterial Input Function (AIF) for DCE-MRI of Head and Neck Cancer
    Onxley, J.
    Yoo, D.
    Muradyan, N.
    MacFall, J.
    Brizel, D.
    Craciunescu, O.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3615 - 3616
  • [8] Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model
    Yankeelov, TE
    Luci, JJ
    Lepage, M
    Li, R
    Debusk, L
    Lin, PC
    Price, RR
    Gore, JC
    [J]. MAGNETIC RESONANCE IMAGING, 2005, 23 (04) : 519 - 529
  • [9] Single-Channel Blind Estimation of Arterial Input Function and Tissue Impulse Response in DCE-MRI
    Taxt, Torfinn
    Jirik, Radovan
    Rygh, Cecilie Brekke
    Gruner, Renate
    Bartos, Michal
    Andersen, Erling
    Curry, Fitz-Roy
    Reed, Rolf K.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 1012 - 1021
  • [10] The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data
    Heisen, M.
    Fan, X.
    Buurman, J.
    van Riel, N. A. W.
    Karczmar, G. S.
    Romeny, B. M. ter Haar
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (16): : 4871 - 4883