Selective recruitment designs for improving observational studies using electronic health records

被引:1
|
作者
Barrett, James E. [1 ]
Cakiroglu, Aylin [2 ]
Bunce, Catey [3 ]
Shah, Anoop [4 ,5 ,6 ]
Denaxas, Spiros [4 ,5 ]
机构
[1] Kings Coll London, Canc Cell Biol & Imaging, London SE1 1UL, England
[2] Francis Crick Inst, London, England
[3] Kings Coll London, Div Hlth & Social Care Res, London, England
[4] UCL, UCL Inst Hlth Informat, London, England
[5] Hlth Data Res UK, London, England
[6] Univ Coll London Hosp NHS Trust, London, England
基金
英国惠康基金;
关键词
electronic health records; observational study; optimal experimental design; selective recruitment; ADAPTIVE CLINICAL-TRIALS; BIAS;
D O I
10.1002/sim.8556
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale electronic health records (EHRs) present an opportunity to quickly identify suitable individuals in order to directly invite them to participate in an observational study. EHRs can contain data from millions of individuals, raising the question of how to optimally select a cohort of sizenfrom a larger pool of sizeN. In this article, we propose a simple selective recruitment protocol that selects a cohort in which covariates of interest tend to have a uniform distribution. We show that selectively recruited cohorts potentially offer greater statistical power and more accurate parameter estimates than randomly selected cohorts. Our protocol can be applied to studies with multiple categorical and continuous covariates. We apply our protocol to a numerically simulated prospective observational study using an EHR database of stable acute coronary disease patients from 82 089 individuals in the U.K. Selective recruitment designs require a smaller sample size, leading to more efficient and cost-effective studies.
引用
收藏
页码:2556 / 2567
页数:12
相关论文
共 50 条
  • [1] Using electronic health records to streamline provider recruitment for implementation science studies
    Okorie, Chiamaka
    Gatsby, Elise E.
    Schroeck, Florian
    Ould Ismail, A. Aziz
    Lynch, Kristine
    [J]. PLOS ONE, 2022, 17 (05):
  • [2] Improving electronic health records retrieval using contexts
    Prados-Suarez, Belen
    Molina, Carlos
    Pena Yanez, Carmen
    Prados de Reyes, Miguel
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8522 - 8536
  • [3] Improving Cardiovascular Outcomes Using Electronic Health Records
    Roumia, Mazen
    Steinhubl, Steven
    [J]. CURRENT CARDIOLOGY REPORTS, 2014, 16 (02)
  • [4] Improving Cardiovascular Outcomes Using Electronic Health Records
    Mazen Roumia
    Steven Steinhubl
    [J]. Current Cardiology Reports, 2014, 16
  • [5] Improving hypertension quality measurement using electronic health records
    Persell, S.
    Kho, A. N.
    Thompson, J.
    Baker, D.
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 2008, 23 : 325 - 325
  • [6] Improving Hypertension Quality Measurement Using Electronic Health Records
    Persell, Stephen D.
    Kho, Abel N.
    Thompson, Jason A.
    Baker, David W.
    [J]. MEDICAL CARE, 2009, 47 (04) : 388 - 394
  • [7] Research data warehouse: using electronic health records to conduct population-based observational studies
    Chen, Wansu
    Xie, Fagen
    Mccarthy, Don P.
    Reynolds, Kristi L.
    Lee, Mingsum
    Coleman, Karen J.
    Getahun, Darios
    Koebnick, Corinna
    Jacobsen, Steve J.
    [J]. JAMIA OPEN, 2023, 6 (02)
  • [8] A Validated Mathematical Model Using Electronic Health Records to Identify Rheumatoid Arthritis Patients for Observational Studies
    Patel, Aarat M.
    Metes, Ilinca D.
    Moreland, Larry W.
    Saul, Melissa
    Wisniewski, Stephen R.
    Levesque, Marc C.
    [J]. ARTHRITIS AND RHEUMATISM, 2012, 64 (10): : S22 - S22
  • [9] Improving diabetes management with electronic health records and patients' health records
    Benhamou, P. -Y.
    [J]. DIABETES & METABOLISM, 2011, 37 : S53 - S56
  • [10] Immortal time bias for life-long conditions in retrospective observational studies using electronic health records
    Tyrer, Freya
    Bhaskaran, Krishnan
    Rutherford, Mark J.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)