Motor Imagery Classification via Clustered-Group Sparse Representation

被引:3
|
作者
Oikonomou, Vangelis P. [1 ]
Nikolopoulos, Spiros [1 ]
Kompatsiaris, Ioannis [1 ]
机构
[1] CERTH, Inst Informat Technol, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
Motor Imagery; Sparse Representation Classification; Group Sparsity; Collaborative Representation Classification; BRAIN-COMPUTER INTERFACES;
D O I
10.1109/BIBE.2019.00064
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A significant limitation on the wide use of a Motor Imagery (MI) Brain-Computer Interfaces is the acquisition of electroenchephalogram (EEG) data over a significant amount of EEG trials to achieve accurate classification. In this work, we propose a new sparse representation classification scheme to overcome the above limitation by training the proposed model using only a limited amount of EEG trials. Our algorithm extends current sparse representation classification schemes by exploiting the group sparsity of EEG features. We have evaluated the proposed algorithm on two MI EEG datasets, showing state-of-the-art performance against well known classification methods of MI BCI literature.
引用
收藏
页码:321 / 325
页数:5
相关论文
共 50 条
  • [1] Sparse Group Representation Model for Motor Imagery EEG Classification
    Jiao, Yong
    Zhang, Yu
    Chen, Xun
    Yin, Erwei
    Jin, Jing
    Wang, Xingyu
    Cichocki, Andrzej
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) : 631 - 641
  • [2] Weighted sparse representation for classification of motor imagery EEG signals
    Sreeja, S. R.
    Himanshu
    Samanta, Debasis
    Sarma, Monalisa
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6180 - 6183
  • [3] SPARSE REPRESENTATION BASED HYPERSPECTRAL IMAGERY CLASSIFICATION VIA EXPANDED DICTIONARY
    He, Lin
    Ruan, Weitong
    Li, Yuanqing
    [J]. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [4] Motor Imagery Classification Using Multiresolution Analysis and Sparse Representation of EEG Signals
    Saidi, Pouria
    Atia, George K.
    Paris, Alan
    Vosoughi, Azadeh
    [J]. 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 815 - 819
  • [5] Motor Imagery ECoG Signal Classification Using Sparse Representation with Elastic Net Constraint
    Deng, Xin
    Li, Danni
    Mi, Jianxun
    Gao, Fengxing
    Chen, Qiaosong
    Wang, Jin
    Liu, Rui
    [J]. PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 44 - 49
  • [6] Online Dictionary Learning for Sparse Representation-Based Classification of Motor Imagery EEG
    Sharghian, Vahid
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    Tinati, Mohammad Ali
    [J]. 2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1793 - 1797
  • [7] Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
    She, Qingshan
    Chen, Kang
    Ma, Yuliang
    Thinh Nguyen
    Zhang, Yingchun
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [8] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    Sreeja, S. R.
    Samanta, Debasis
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31157 - 31180
  • [9] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    S. R. Sreeja
    Debasis Samanta
    [J]. Multimedia Tools and Applications, 2023, 82 : 31157 - 31180
  • [10] Union of random subspace-based group sparse representation for hyperspectral imagery classification
    Yu, Haoyang
    Gao, Lianru
    Zhang, Bing
    [J]. REMOTE SENSING LETTERS, 2018, 9 (06) : 534 - 540